宮崎大学 - 質問解決D.B.(データベース)

宮崎大学

#宮崎大学2024#不定積分_19#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
x1+x2dx

出典:2024年宮崎大学
この動画を見る 

#宮崎大学2024#定積分_17#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
0π3cos2x4dx

出典:2024年宮崎大学
この動画を見る 

大学入試問題#864「基本に忠実に」 #宮崎大学(2013) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
01e4xe2x+2dx

出典:2013年宮崎大学 入試問題
この動画を見る 

大学入試問題#848「何種類か解法がありそう」 #宮崎大学(2023) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1331+xx(1+x2)dx

出典:2023年宮崎大学
この動画を見る 

大学入試問題#841「因数分解が丸出し・・・・」 #宮崎大学(2022) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
x31(x1)(x2)dx

出典:2022年宮崎大学
この動画を見る 

#宮崎大学(2015) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
12x5ex3dx

出典:2015年宮崎大学
この動画を見る 

大学入試問題#840「簡単に処理したい」 #宮崎大学(2016)

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
242x3+x22x+2x4+x22dx

出典:2016年宮崎大学 入試問題
この動画を見る 

#宮崎大学(2023) #不定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
x2x+1dx

出典:2023年宮崎大学
この動画を見る 

#宮崎大学 2023年 #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
20log(x+3)dx

出典:2023年宮崎大学
この動画を見る 

#宮崎大学 2020年 #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
xx+22dx

出典:2020年宮崎大学
この動画を見る 

#宮崎大学 2020年 #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
π2π2(3x+2)sin x dx

出典:2020年宮崎大学
この動画を見る 

#宮崎大学 2022年 #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
0π12sin2x cos2x dx

出典:2022年宮崎大学
この動画を見る 

【高校数学】毎日積分59日目~47都道府県制覇への道~【③宮崎】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数f(x)=x1+x2および座標平面上の原点Oを通る曲線C:y=f(x)について、次の各問に答えよ。
(1)f(x)の導関数f(x)および第2次導関数f(x)を求めよ。
(2)直線y=axが曲線COで接するときの定数aの値を求めよ。また、このとき、x0において、axf(x)が成り立つことを示せ。
(3)関数f(x)の増減、極値、曲線Cの凹凸、変曲点および漸近線を調べて、曲線Cの概形をかけ。
(4)(2)で求めたaの値に対し、曲線Cと直線y=axおよび直線x=3で囲まれた部分の面積Sを求めよ。
【宮崎大学 2023】
この動画を見る 

大学入試問題#360「もっとスマートな解答がありそう・・・」 宮崎大学2014 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
01x3+3x2x2+3x+2dx

出典:2014年宮崎大学
この動画を見る 

大学入試問題#325 宮崎大学(2013) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
ππ|ecos xsin x|dx

出典:2013年宮崎大学 入試問題
この動画を見る 

大学入試問題#324 宮崎大学(2013) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
01x3log(x2+1)dx

出典:2013年宮崎大学 入試問題
この動画を見る 

大学入試問題#320 宮崎大学 改 (2010) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
log πlog 2πe2xsin(ex)dx

出典:2010年宮崎大学 入試問題
この動画を見る 

大学入試問題#223 宮崎大学(2015) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
01x3+3x2x2+3x+2 dx

出典:2015年宮崎大学 入試問題
この動画を見る 

大学入試問題#216 宮崎大学(2017) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
π3π2cos2(3x+π6)dxを計算せよ。

出典:2017年宮崎大学 入試問題
この動画を見る 

大学入試問題#215 宮崎大学(2011) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
23x2x(x+1)を計算せよ。

出典:2011年宮崎大学 入試問題
この動画を見る 

大学入試問題#211 宮崎大学(2018) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
0π21+sin x dxを計算せよ

出典:2018年宮崎大学 入試問題
この動画を見る 

大学入試問題#210 宮崎大学(2018) 不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
x3x24 dxを計算せよ。

出典:2018年宮崎大学 入試問題
この動画を見る 

数学「大学入試良問集」【6−4 メネラウス、方べきの定理】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
ABCに対し、点PABの中点、点Qは辺BC上のB,Cと異なる点、点Rは直線AQと直線CPとの交点とする。
このとき、各問いに答えよ。
(1)
a=CRRP,b=CQQBとおくとき、abの関係式を求めよ。

(2)
ABCの外接円Oと直線CPとの点C以外の交点をXとする。
AP=CR,CQ=QBであるとき、CR:RP:PXを求めよ。
この動画を見る 

宮崎大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
n(n2+a)がすべての自然数nで6の倍数になるaの値を求めよ

出典:2019年宮崎大学 過去問
この動画を見る 
PAGE TOP preload imagepreload image