宮崎大学
#宮崎大学2024#不定積分_19#元高校教員
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#宮崎大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int x \sqrt{ 1+x^2 }dx$
出典:2024年宮崎大学
この動画を見る
$\displaystyle \int x \sqrt{ 1+x^2 }dx$
出典:2024年宮崎大学
#宮崎大学2024#定積分_17#元高校教員
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#宮崎大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{3}} \cos^2\displaystyle \frac{x}{4} dx$
出典:2024年宮崎大学
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{3}} \cos^2\displaystyle \frac{x}{4} dx$
出典:2024年宮崎大学
【高校数学】毎日積分59日目~47都道府県制覇への道~【③宮崎】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数$\displaystyle f(x)=\frac{x}{1+x^2}$および座標平面上の原点$O$を通る曲線$C:y=f(x)$について、次の各問に答えよ。
(1)$f(x)$の導関数$f'(x)$および第2次導関数$f''(x)$を求めよ。
(2)直線$y=ax$が曲線$C$に$O$で接するときの定数$a$の値を求めよ。また、このとき、$x >0$において、$ax>f(x)$が成り立つことを示せ。
(3)関数$f(x)$の増減、極値、曲線$C$の凹凸、変曲点および漸近線を調べて、曲線$C$の概形をかけ。
(4)(2)で求めた$a$の値に対し、曲線$C$と直線$y=ax$および直線$x=\sqrt{3}$で囲まれた部分の面積$S$を求めよ。
【宮崎大学 2023】
この動画を見る
関数$\displaystyle f(x)=\frac{x}{1+x^2}$および座標平面上の原点$O$を通る曲線$C:y=f(x)$について、次の各問に答えよ。
(1)$f(x)$の導関数$f'(x)$および第2次導関数$f''(x)$を求めよ。
(2)直線$y=ax$が曲線$C$に$O$で接するときの定数$a$の値を求めよ。また、このとき、$x >0$において、$ax>f(x)$が成り立つことを示せ。
(3)関数$f(x)$の増減、極値、曲線$C$の凹凸、変曲点および漸近線を調べて、曲線$C$の概形をかけ。
(4)(2)で求めた$a$の値に対し、曲線$C$と直線$y=ax$および直線$x=\sqrt{3}$で囲まれた部分の面積$S$を求めよ。
【宮崎大学 2023】
宮崎大 整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n(n^2+a)$がすべての自然数$n$で6の倍数になる$a$の値を求めよ
出典:2019年宮崎大学 過去問
この動画を見る
$n(n^2+a)$がすべての自然数$n$で6の倍数になる$a$の値を求めよ
出典:2019年宮崎大学 過去問