東京電機大学
大学入試問題#720「正面突破はしんどい?」 電気通信大学(2023) y軸回転体
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京電機大学
指導講師:
ますただ
問題文全文(内容文):
$0 \leq x \leq 1$で定まる関数
$f(x)=\sqrt{ 1-x^2 }+\displaystyle \frac{x}{2}-1$において、$y=f(x)$と$x$軸で囲まれた部分を、$y$軸の周りに1回転して得られる体積$V$を求めよ。
出典:2023年電気通信大学 入試問題
この動画を見る
$0 \leq x \leq 1$で定まる関数
$f(x)=\sqrt{ 1-x^2 }+\displaystyle \frac{x}{2}-1$において、$y=f(x)$と$x$軸で囲まれた部分を、$y$軸の周りに1回転して得られる体積$V$を求めよ。
出典:2023年電気通信大学 入試問題
大学入試問題#642「問題選択が大変です」 東京電機大学(2022) #不定積分
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京電機大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} \displaystyle \frac{log\ x}{x\{1+(log\ x)^2\}} dx$
出典:2022年東京電機大学 入試問題
この動画を見る
$\displaystyle \int_{1}^{e} \displaystyle \frac{log\ x}{x\{1+(log\ x)^2\}} dx$
出典:2022年東京電機大学 入試問題
大学入試問題#636「ミスなく」 東京電機大学(2020) #不定積分
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#東京電機大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x^3log(x^2+1) dx$
出典:2020年東京電機大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{1} x^3log(x^2+1) dx$
出典:2020年東京電機大学 入試問題
大学入試問題#347 東京電機大学 #定積分
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京電機大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{3}} (x\ \tan\ x-log(\cos\ x)) dx$
出典:東京電機大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{3}} (x\ \tan\ x-log(\cos\ x)) dx$
出典:東京電機大学 入試問題
東京電機大 積分
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#東京電機大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=3x^2-2\displaystyle \int_{-1}^{0} xf(t) dt+\displaystyle \int_{1}^{2} f(t) dt$
$f(x)$を求めよ
出典:2018年東京電機大学 過去問
この動画を見る
$f(x)=3x^2-2\displaystyle \int_{-1}^{0} xf(t) dt+\displaystyle \int_{1}^{2} f(t) dt$
$f(x)$を求めよ
出典:2018年東京電機大学 過去問
東京電機大 4次関数と直線の共有点
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#東京電機大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-2x^3+x$と$(1,0)$を通り傾き$k$の直線との共有点の個数を求めよ
出典:2017年東京電機大学 過去問
この動画を見る
$f(x)=x^4-2x^3+x$と$(1,0)$を通り傾き$k$の直線との共有点の個数を求めよ
出典:2017年東京電機大学 過去問