数と式
【数Ⅰ】【数と式】1次不等式の利用2 ※問題文は概要欄
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
1個800円の品物がある。入会金500円を払って会員になると、この品物を6%引きで買うことができる。入会して品物を買う場合、何個以上買えば入会しないで買うより安くなるか。ただし、消費税は考えないものとする。
13%と5%の食塩水を混ぜて400gの食塩水を作った。その濃度が10%以上であるとき、混ぜた5%の食塩水は何g以下か。
ある高等学校の1年全員が長いすに座っていくとき、1脚に6人ずつ座っていくと15人が座れなくなる。また、1脚に7人ずつ座っていくと、使わない長いすが3脚できる。長いすの数は何脚以上何脚以下か。
この動画を見る
1個800円の品物がある。入会金500円を払って会員になると、この品物を6%引きで買うことができる。入会して品物を買う場合、何個以上買えば入会しないで買うより安くなるか。ただし、消費税は考えないものとする。
13%と5%の食塩水を混ぜて400gの食塩水を作った。その濃度が10%以上であるとき、混ぜた5%の食塩水は何g以下か。
ある高等学校の1年全員が長いすに座っていくとき、1脚に6人ずつ座っていくと15人が座れなくなる。また、1脚に7人ずつ座っていくと、使わない長いすが3脚できる。長いすの数は何脚以上何脚以下か。
【数Ⅰ】【数と式】1次不等式の利用1 ※問題文は概要欄
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次のものを求めよ。
(1)不等式5(x-3)<-2(x-14)を満たす最大の整数x
(2)不等式x/2+4/3≧x-2/3を満たす自然数xの個数
不等式2x-3>a+8xについて、次の問いに答えよ。
(1)解がx<1となるように、定数aの値を定めよ。
(2)解がx=0を含むように、定数aの値の範囲を定めよ。
(3)この不等式を満たすxのうち、最大の整数が0となるように、定数aの値の範囲を定めよ。
aを定数とするとき、次の方程式、不等式を解け。
(1)ax=1
(2)ax≦2
(3)ax+6>3x+2a
この動画を見る
次のものを求めよ。
(1)不等式5(x-3)<-2(x-14)を満たす最大の整数x
(2)不等式x/2+4/3≧x-2/3を満たす自然数xの個数
不等式2x-3>a+8xについて、次の問いに答えよ。
(1)解がx<1となるように、定数aの値を定めよ。
(2)解がx=0を含むように、定数aの値の範囲を定めよ。
(3)この不等式を満たすxのうち、最大の整数が0となるように、定数aの値の範囲を定めよ。
aを定数とするとき、次の方程式、不等式を解け。
(1)ax=1
(2)ax≦2
(3)ax+6>3x+2a
【数Ⅰ】【数と式】根号を含む計算 ※問題文は概要欄
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\displaystyle \frac{\sqrt{2}}{\sqrt{2}-1}$の整数部分をa、小数部分をbとする。
次の式の値を求めよ。
(1)$a$ (2)$b$ (3)$a+b+b^2$
次の各場合について、$\sqrt{x^2-10x+25}$ をxの多項式で表せ。
(1)x≧5 (2)x<5
この動画を見る
$\displaystyle \frac{\sqrt{2}}{\sqrt{2}-1}$の整数部分をa、小数部分をbとする。
次の式の値を求めよ。
(1)$a$ (2)$b$ (3)$a+b+b^2$
次の各場合について、$\sqrt{x^2-10x+25}$ をxの多項式で表せ。
(1)x≧5 (2)x<5
【数Ⅰ】【数と式】平方根の式の値 ※問題文は概要欄
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$x=\dfrac{\sqrt{ 5 }+2}{\sqrt{ 5 }-2}$ , $y=\dfrac{\sqrt{ 5 }-2}{\sqrt{ 5 }+2}$
のとき, 次の式の値を求めよ。
(1) $x+y$ (2) $xy$ (3) $x^2y+xy^2 $
(4) $x^2+y^2$ (5) $x^3+y^3$
$x=\sqrt{ 2 }-1$
のとき, 次の式の値を求めよ。
(1) $x+\dfrac{1}{x}$ (2) $x^2+\dfrac{1}{x^2}$ (3) $x^3+\dfrac{1}{x^3}$
(4) $x^4+\dfrac{1}{x^4}$ (5) $x^5+\dfrac{1}{x^5}$
この動画を見る
$x=\dfrac{\sqrt{ 5 }+2}{\sqrt{ 5 }-2}$ , $y=\dfrac{\sqrt{ 5 }-2}{\sqrt{ 5 }+2}$
のとき, 次の式の値を求めよ。
(1) $x+y$ (2) $xy$ (3) $x^2y+xy^2 $
(4) $x^2+y^2$ (5) $x^3+y^3$
$x=\sqrt{ 2 }-1$
のとき, 次の式の値を求めよ。
(1) $x+\dfrac{1}{x}$ (2) $x^2+\dfrac{1}{x^2}$ (3) $x^3+\dfrac{1}{x^3}$
(4) $x^4+\dfrac{1}{x^4}$ (5) $x^5+\dfrac{1}{x^5}$
【数Ⅰ】【数と式】平方根の近似値 ※問題文は概要欄
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\sqrt{2}=1.4142$, $\sqrt{3}=1.7321$
とするとき, 分母の有理化を利用して, 次の値を求めよ。
(1) $\dfrac{10}{\sqrt{3}+\sqrt{2}}$ (2) $\dfrac{1}{\sqrt{12}-\sqrt{2}}$
$x=1-\sqrt{5}$
のとき, 次の式の値を求めよ。
(1) $x^2-2x-4$ (2) $x^3-2x^2$
この動画を見る
$\sqrt{2}=1.4142$, $\sqrt{3}=1.7321$
とするとき, 分母の有理化を利用して, 次の値を求めよ。
(1) $\dfrac{10}{\sqrt{3}+\sqrt{2}}$ (2) $\dfrac{1}{\sqrt{12}-\sqrt{2}}$
$x=1-\sqrt{5}$
のとき, 次の式の値を求めよ。
(1) $x^2-2x-4$ (2) $x^3-2x^2$
【数Ⅰ】【数と式】平方根の計算 ※問題文は概要欄
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の計算をせよ。
(1) $(1+\sqrt{ 2 }-\sqrt{ 3 })^2$
(2)$(3-\sqrt{ 2 }-\sqrt{ 11 })(3-\sqrt{ 2 }+\sqrt{ 11 })$
次の計算をせよ。
(1) $\displaystyle \frac{3\sqrt{ 5 }-5\sqrt{ 3 }}{\sqrt{ 5 }+\sqrt{ 3 }}+\displaystyle \frac{3\sqrt{ 5 }+4\sqrt{ 3 }}{3\sqrt{ 5 }-4\sqrt{ 3 }}$
(2) $\displaystyle \frac{\sqrt{ 2 }-1}{\sqrt{ 2 }+1}+\displaystyle \frac{\sqrt{ 3 }-\sqrt{ 2 }}{\sqrt{ 3 }+\sqrt{ 2 }}+\displaystyle \frac{\sqrt{ 3 }+\sqrt{ 2 }}{2-\sqrt{ 3 }}$
次の計算をせよ。
(1) $\displaystyle \frac{1}{1+\sqrt{ 2 }-\sqrt{ 3 }}$
(2) $\displaystyle \frac{\sqrt{ 5 }+\sqrt{ 3 }+\sqrt{ 2 }}{\sqrt{ 5 }+\sqrt{ 3 }-\sqrt{ 2 }}$
(3) $\displaystyle \frac{\sqrt{ 2 }+\sqrt{ 5 }+\sqrt{ 7 }}{\sqrt{ 2 }+\sqrt{ 5 }-\sqrt{ 7 }}+\displaystyle \frac{\sqrt{ 2 }-\sqrt{ 5 }+\sqrt{ 7 }}{\sqrt{ 2 }-\sqrt{ 5 }-\sqrt{ 7 }}$
この動画を見る
次の計算をせよ。
(1) $(1+\sqrt{ 2 }-\sqrt{ 3 })^2$
(2)$(3-\sqrt{ 2 }-\sqrt{ 11 })(3-\sqrt{ 2 }+\sqrt{ 11 })$
次の計算をせよ。
(1) $\displaystyle \frac{3\sqrt{ 5 }-5\sqrt{ 3 }}{\sqrt{ 5 }+\sqrt{ 3 }}+\displaystyle \frac{3\sqrt{ 5 }+4\sqrt{ 3 }}{3\sqrt{ 5 }-4\sqrt{ 3 }}$
(2) $\displaystyle \frac{\sqrt{ 2 }-1}{\sqrt{ 2 }+1}+\displaystyle \frac{\sqrt{ 3 }-\sqrt{ 2 }}{\sqrt{ 3 }+\sqrt{ 2 }}+\displaystyle \frac{\sqrt{ 3 }+\sqrt{ 2 }}{2-\sqrt{ 3 }}$
次の計算をせよ。
(1) $\displaystyle \frac{1}{1+\sqrt{ 2 }-\sqrt{ 3 }}$
(2) $\displaystyle \frac{\sqrt{ 5 }+\sqrt{ 3 }+\sqrt{ 2 }}{\sqrt{ 5 }+\sqrt{ 3 }-\sqrt{ 2 }}$
(3) $\displaystyle \frac{\sqrt{ 2 }+\sqrt{ 5 }+\sqrt{ 7 }}{\sqrt{ 2 }+\sqrt{ 5 }-\sqrt{ 7 }}+\displaystyle \frac{\sqrt{ 2 }-\sqrt{ 5 }+\sqrt{ 7 }}{\sqrt{ 2 }-\sqrt{ 5 }-\sqrt{ 7 }}$
【数Ⅰ】【数と式】循環小数と絶対値 ※問題文は概要欄
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の分数を小数で表したとき、[ ]内の数字を求めよ。
(1) $\frac{11}{101}$ (2) $\frac{9}{41}$
x=-4,-1,2,5 のそれぞれについて、次の式の値を求めよ。
(1)|-x| (2)|x+1| (3)|1-2x|+|x-1|
この動画を見る
次の分数を小数で表したとき、[ ]内の数字を求めよ。
(1) $\frac{11}{101}$ (2) $\frac{9}{41}$
x=-4,-1,2,5 のそれぞれについて、次の式の値を求めよ。
(1)|-x| (2)|x+1| (3)|1-2x|+|x-1|
【数Ⅰ】【集合と論証】背理法の使い方 ※問題文は概要欄
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
"$x,y,z$は実数とする。次の▢の中に、「必要十分条件であるが十分条件ではない」「十分条件であるが必要条件ではない」「必要十分条件である」「必要条件でも十分条件でもない」のうち、それぞれどれが適するか。
(1)$(x-y)(y-z)=0$は$x=y=z$であるための$\Box$
(2)$「x\gt 0 $かつ$y\gt 0」$は、$xy\gt 0$であるための$\Box$
(3)$x=y=0$は、$「xy=0$かつ$x+y=0」$であるための$\Box$
(4)$\angle A\lt 90$は$△ABC$が鋭角三角形であるための$\Box$
(5)$△ABC$の3辺$BC,CA,AB$の長さがそれぞれa$,b,c$とする。
$(a-b)(a^2+b^2=c^2)=0$は$△ABC$が直角二等辺三角形であるための$\Box$
$a,b$は実数とする。次の2つの条件$p,q$は同値であることを証明せよ。
$p:a\gt 1$かつ$b\gt 1$ $q:a+b\gt 2$かつ$(a-1)(b-1)\gt 0$
この動画を見る
"$x,y,z$は実数とする。次の▢の中に、「必要十分条件であるが十分条件ではない」「十分条件であるが必要条件ではない」「必要十分条件である」「必要条件でも十分条件でもない」のうち、それぞれどれが適するか。
(1)$(x-y)(y-z)=0$は$x=y=z$であるための$\Box$
(2)$「x\gt 0 $かつ$y\gt 0」$は、$xy\gt 0$であるための$\Box$
(3)$x=y=0$は、$「xy=0$かつ$x+y=0」$であるための$\Box$
(4)$\angle A\lt 90$は$△ABC$が鋭角三角形であるための$\Box$
(5)$△ABC$の3辺$BC,CA,AB$の長さがそれぞれa$,b,c$とする。
$(a-b)(a^2+b^2=c^2)=0$は$△ABC$が直角二等辺三角形であるための$\Box$
$a,b$は実数とする。次の2つの条件$p,q$は同値であることを証明せよ。
$p:a\gt 1$かつ$b\gt 1$ $q:a+b\gt 2$かつ$(a-1)(b-1)\gt 0$
【数Ⅰ】【集合と論証】対偶の使い方 ※問題文は概要欄
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#集合と命題#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
【1問目】
$m,n$は整数とする。次の命題を証明せよ。
(1)$n^2$が5の倍数ならば、$n$は5の倍数である。
(2)$mn$が3の倍数ならば、$m,n$の少なくとも一方は3の倍数である。
【2問目】
$\sqrt6$が無理数であることを用いて、$\sqrt3-\sqrt2$は無理数であることを証明せよ。
この動画を見る
【1問目】
$m,n$は整数とする。次の命題を証明せよ。
(1)$n^2$が5の倍数ならば、$n$は5の倍数である。
(2)$mn$が3の倍数ならば、$m,n$の少なくとも一方は3の倍数である。
【2問目】
$\sqrt6$が無理数であることを用いて、$\sqrt3-\sqrt2$は無理数であることを証明せよ。
【数Ⅰ】【集合と論証】真偽の調べ方 ※問題文は概要欄
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#集合と命題#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$a,b$は実数とする。次の命題の真偽を求めよ。
(1)$ab=0$ならば$a^2+b^2=0$である。
(2)$a^2=4$ならば$|a+1|≧1$である。
(3)$ab$が有理数であるならば、$a,b$はともに有理数である。
(4)$a+b, ab$がともに有理数ならば、$a,b$はともに有理数である。
全体集合を$U$とし、条件$p,q$を満たす全体の集合を、それぞれ$P,Q$とする。
命題$\overline{p}⇒q$が真であるとき、$P,Q$について常に成り立つ事をすべて選べ。
①$P=Q$
②$Q⊂P$
③$\overline{Q}⊂P$
④$P⊂\overline{Q}$
⑤$P∪\overline{Q}=P$
⑥$P∪\overline{Q}=\overline{Q}$
⑦$P∩Q=\varnothing$
⑧$P∪Q=U$
この動画を見る
$a,b$は実数とする。次の命題の真偽を求めよ。
(1)$ab=0$ならば$a^2+b^2=0$である。
(2)$a^2=4$ならば$|a+1|≧1$である。
(3)$ab$が有理数であるならば、$a,b$はともに有理数である。
(4)$a+b, ab$がともに有理数ならば、$a,b$はともに有理数である。
全体集合を$U$とし、条件$p,q$を満たす全体の集合を、それぞれ$P,Q$とする。
命題$\overline{p}⇒q$が真であるとき、$P,Q$について常に成り立つ事をすべて選べ。
①$P=Q$
②$Q⊂P$
③$\overline{Q}⊂P$
④$P⊂\overline{Q}$
⑤$P∪\overline{Q}=P$
⑥$P∪\overline{Q}=\overline{Q}$
⑦$P∩Q=\varnothing$
⑧$P∪Q=U$
【数Ⅰ】【集合と論証】集合:ベン図を利用した問題 ※問題文は概要欄
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#集合と命題#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$U=\{1,2,3,4,5,6,7,8,9\}$を全体集合とする。$U$の部分集合$A,B$について
$A∩B=\{2\}$ $\overline{A}∩B=\{4,6,8\}$ $ \overline{A}∩\overline{B}=\{1,9\}$
であるとき、次の∩を求めよ。
(1)$A∪B$
(2)$B$
(3)$A∩\overline{B}$
$U=\{x|1≦x≦10、xは整数\}$を全体集合とする。$U$の部分集合
$A=\{1,2,3,4,8\} B=\{3,4,5,6\} C=\{2,3,6,7\}$
について、次の集合を求めよ。
(1)$A∩B∩C$
(2)$A∪B∪C$
(3)$A∩B∩\overline{C}$
(4)$\overline{A}∩B∩\overline{C}$
(5)$\overline{(A∩B∩C)}$
(6)$(A∪C)∩\overline{B}$
$A=\{1,3,3a-2\}$ $B=\{-5、a+2、a^2-2a+1\}$ $A∩B=\{1,4\}$のとき
定数$a$の値と和集合$A∪B$を求めよ。
この動画を見る
$U=\{1,2,3,4,5,6,7,8,9\}$を全体集合とする。$U$の部分集合$A,B$について
$A∩B=\{2\}$ $\overline{A}∩B=\{4,6,8\}$ $ \overline{A}∩\overline{B}=\{1,9\}$
であるとき、次の∩を求めよ。
(1)$A∪B$
(2)$B$
(3)$A∩\overline{B}$
$U=\{x|1≦x≦10、xは整数\}$を全体集合とする。$U$の部分集合
$A=\{1,2,3,4,8\} B=\{3,4,5,6\} C=\{2,3,6,7\}$
について、次の集合を求めよ。
(1)$A∩B∩C$
(2)$A∪B∪C$
(3)$A∩B∩\overline{C}$
(4)$\overline{A}∩B∩\overline{C}$
(5)$\overline{(A∩B∩C)}$
(6)$(A∪C)∩\overline{B}$
$A=\{1,3,3a-2\}$ $B=\{-5、a+2、a^2-2a+1\}$ $A∩B=\{1,4\}$のとき
定数$a$の値と和集合$A∪B$を求めよ。
【数Ⅰ】【数と式】式の展開2 ※問題文は概要欄
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
展開せよ
${(a+1)}^3$ ${(x+3y)}^3$
${(2a-1)}^3$ ${(-3a+2b)}^3$
展開せよ
$(a+5)(a^2-5a+25)$ $(3-a)(9+3a+a^2)$
$(2x+y)(4x^2-2xy+y^2)$ $(3a-2b)(9a^2+6ab+4b^2)$
計算せよ
$(x-1)(x-3)(x+1)(x+3)$ $(x+2)(x+5)(x-4)(x-1)$
$(a-b)(a+b)(a+b)(a+b) $ ${(2x-y)}^3{(2x+y)}^3$
${(a+b)}^2{(a-b)}^2{(a+ab+b)}^2{(a-ab+b)}^2$
$(x+2)(x-2)(x^2+2x+4)(x^2-2x+4)$
${(a+b+c)}^2+{(a+b-c)}^2+{(b+c-a)}^2+{(c+a-b)}^2$
この動画を見る
展開せよ
${(a+1)}^3$ ${(x+3y)}^3$
${(2a-1)}^3$ ${(-3a+2b)}^3$
展開せよ
$(a+5)(a^2-5a+25)$ $(3-a)(9+3a+a^2)$
$(2x+y)(4x^2-2xy+y^2)$ $(3a-2b)(9a^2+6ab+4b^2)$
計算せよ
$(x-1)(x-3)(x+1)(x+3)$ $(x+2)(x+5)(x-4)(x-1)$
$(a-b)(a+b)(a+b)(a+b) $ ${(2x-y)}^3{(2x+y)}^3$
${(a+b)}^2{(a-b)}^2{(a+ab+b)}^2{(a-ab+b)}^2$
$(x+2)(x-2)(x^2+2x+4)(x^2-2x+4)$
${(a+b+c)}^2+{(a+b-c)}^2+{(b+c-a)}^2+{(c+a-b)}^2$
【数Ⅰ】【数と式】式の展開1 ※問題文は概要欄
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
[ ]内の文字について降べきの順に整理せよ
$ax^2+bx-x^4+ax^2-ab [x]$
$2x^2+y^2-3xy-2y^2+3y+4xy-x^2-2x-5 [y]$
$ax^3+a^2x-2x^2-a^3-3ax^3+4a^3 [a]$
$a^2b+b^3+abc-a^2c-ac^2+bc^2-ab^2+c^3 [a]$
ある多項式から$3x^2-xy+2y^2$を引くところ
を誤って加えたため,答えが$2x^2+xy-y^2$
となった。正しい答えを求めよ
次の式を展開した時の[ ]内の項の係数を
求めよ
$(5a^3-3a^2b+7ab^2-2b^3)(3a^2+2ab-3b^2) [a²b³][a³b²]$
$(x+2y-z)(3x+4y+2z)(-x+y-3z) [xy^2][xyz]$
この動画を見る
[ ]内の文字について降べきの順に整理せよ
$ax^2+bx-x^4+ax^2-ab [x]$
$2x^2+y^2-3xy-2y^2+3y+4xy-x^2-2x-5 [y]$
$ax^3+a^2x-2x^2-a^3-3ax^3+4a^3 [a]$
$a^2b+b^3+abc-a^2c-ac^2+bc^2-ab^2+c^3 [a]$
ある多項式から$3x^2-xy+2y^2$を引くところ
を誤って加えたため,答えが$2x^2+xy-y^2$
となった。正しい答えを求めよ
次の式を展開した時の[ ]内の項の係数を
求めよ
$(5a^3-3a^2b+7ab^2-2b^3)(3a^2+2ab-3b^2) [a²b³][a³b²]$
$(x+2y-z)(3x+4y+2z)(-x+y-3z) [xy^2][xyz]$
【数Ⅰ】【数と式】因数分解4 ※問題文は概要欄
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の式を因数分解せよ
(1)$a^2 (b-c)+b^2(c-a)+c^2(a-b)$
(2)$(a+b)(b+c)(c+a)+abc$
次の式を因数分解せよ。
(1)$x^3-5x^2-4x+20$ (2)$8x^3+6x^2+3x+1$
(3)$x^2y+4y^2z-4y^3-x^2z$ (4)$a^4+a^2c-ab^3+abc+b^2c$
この動画を見る
次の式を因数分解せよ
(1)$a^2 (b-c)+b^2(c-a)+c^2(a-b)$
(2)$(a+b)(b+c)(c+a)+abc$
次の式を因数分解せよ。
(1)$x^3-5x^2-4x+20$ (2)$8x^3+6x^2+3x+1$
(3)$x^2y+4y^2z-4y^3-x^2z$ (4)$a^4+a^2c-ab^3+abc+b^2c$
【数Ⅰ】【数と式】因数分解2 ※問題文は概要欄
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
因数分解せよ
問1 整理と因数分解
(1) $xy-x-y+1$
(2) $ab+bc-cd-da$
(3) $25-15y+3xy-x^2$
(4) $a^2b+a^2-b-1$
(5) $a^2+b^2+2bc+2ca+2ab$
(6) $2x^2+2xy-3x-4y-2$
問2 たすき掛け
(1) $x^2+(3y+1)x+(y+4)(2y-3)$
(2) $x^2+3xy+2y^2-6x-11y+5$
(3) $x^2-2xy+y^2-x+y-2$
(4) $2x^2+5xy+2y^2+4x-y-6$
(5) $2x^2+xy-y^2+7x-5y-4$
(6) $2x^2+5xy-3y^2-x+11y-6$
この動画を見る
因数分解せよ
問1 整理と因数分解
(1) $xy-x-y+1$
(2) $ab+bc-cd-da$
(3) $25-15y+3xy-x^2$
(4) $a^2b+a^2-b-1$
(5) $a^2+b^2+2bc+2ca+2ab$
(6) $2x^2+2xy-3x-4y-2$
問2 たすき掛け
(1) $x^2+(3y+1)x+(y+4)(2y-3)$
(2) $x^2+3xy+2y^2-6x-11y+5$
(3) $x^2-2xy+y^2-x+y-2$
(4) $2x^2+5xy+2y^2+4x-y-6$
(5) $2x^2+xy-y^2+7x-5y-4$
(6) $2x^2+5xy-3y^2-x+11y-6$
【数Ⅰ】【数と式】因数分解1 ※問題文は概要欄
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
因数分解せよ
問1 3次の因数分解①
(1) $8x^3+1$ (2) $64a^3-27$ (3) $27x^3+125y^3$
問2 たすき掛け
(1) $abx^2-(a^2+b^2 )x-ab$ (2) $abx^2+(a^2-b^2 )xy-aby^2$
問3 置き換え
(1) $(x^2-x)^2-14(x^2-x)+24$ (2) $(x^2+2x)(x^2+2x-2)-3$
問4 3次の因数分解②
(1) $x^3+3x^2 y+3xy^2+y^3$ (2) $8a^3-12a^2 b+6ab^2-b^3$
この動画を見る
因数分解せよ
問1 3次の因数分解①
(1) $8x^3+1$ (2) $64a^3-27$ (3) $27x^3+125y^3$
問2 たすき掛け
(1) $abx^2-(a^2+b^2 )x-ab$ (2) $abx^2+(a^2-b^2 )xy-aby^2$
問3 置き換え
(1) $(x^2-x)^2-14(x^2-x)+24$ (2) $(x^2+2x)(x^2+2x-2)-3$
問4 3次の因数分解②
(1) $x^3+3x^2 y+3xy^2+y^3$ (2) $8a^3-12a^2 b+6ab^2-b^3$
これできる?
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
これできる?
※問題文は動画内参照
この動画を見る
これできる?
※問題文は動画内参照
#自治医科大学2024#式変形_21#元高校教員
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師:
ますただ
問題文全文(内容文):
$x^{\frac{1}{3}}+x^{-\frac{1}{3}}$のとき
$\displaystyle \frac{x+x^{-1}}{2}$の値を求めよ。
出典:自治医科大学 式変形問題
この動画を見る
$x^{\frac{1}{3}}+x^{-\frac{1}{3}}$のとき
$\displaystyle \frac{x+x^{-1}}{2}$の値を求めよ。
出典:自治医科大学 式変形問題
どっちが難しい?智弁対決 智弁学園VS智弁和歌山
単元:
#数学(中学生)#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
xの不等式において定数aの値の範囲は?
・$4x \leqq 5-3a$の解が自然数を1つも含まないとき 2001智辯学園高等学校
・x<aを満たす自然数xがちょうど3コのとき 2002智辯学園和歌山高等学校
この動画を見る
xの不等式において定数aの値の範囲は?
・$4x \leqq 5-3a$の解が自然数を1つも含まないとき 2001智辯学園高等学校
・x<aを満たす自然数xがちょうど3コのとき 2002智辯学園和歌山高等学校
#福島大学2024#元高校教員
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師:
ますただ
問題文全文(内容文):
$\sqrt{ 2023\times2025+1 }$の値を求めよ。
出典:2024年福島大学
この動画を見る
$\sqrt{ 2023\times2025+1 }$の値を求めよ。
出典:2024年福島大学
大学入試問題#901「基本だけど初手大事」 #電気通信大学(2024)
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{4} \sqrt{ 2-\sqrt{ x} }$ $dx$
出典:2024年電気通信大学
この動画を見る
$\displaystyle \int_{0}^{4} \sqrt{ 2-\sqrt{ x} }$ $dx$
出典:2024年電気通信大学
大学入試問題#887「小問ではめんどいよー」 #兵庫医科大学(2010) #整式
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫医科大学
指導講師:
ますただ
問題文全文(内容文):
$x^{2010}$を$x^4-1$で割った余りに$x=3$を代入した値を求めよ。
出典:2010年兵庫医科大学
この動画を見る
$x^{2010}$を$x^4-1$で割った余りに$x=3$を代入した値を求めよ。
出典:2010年兵庫医科大学
これなんで? フルは↑
単元:
#数Ⅰ#数A#数Ⅱ#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#複素数
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
これなんで? フルは↑
【問題文】20×20
この動画を見る
これなんで? フルは↑
【問題文】20×20
「20+20=200」になる理由を解説
単元:
#数Ⅰ#数A#数Ⅱ#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#複素数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
「20+20=200」になる理由を解説しています。
この動画を見る
「20+20=200」になる理由を解説しています。
福田のおもしろ数学184〜2変数関数の最大最小
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
0≦$x$≦1, 0≦$y$≦1のとき、2変数関数
$f(x,y)$=$5xy-2(x+y)+1$
の最大値$M$、最小値$m$を求めよ。
この動画を見る
0≦$x$≦1, 0≦$y$≦1のとき、2変数関数
$f(x,y)$=$5xy-2(x+y)+1$
の最大値$M$、最小値$m$を求めよ。
これ解ける?
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
これ解ける?
※問題文は動画内参照
この動画を見る
これ解ける?
※問題文は動画内参照
福田のおもしろ数学179〜文字係数の1次不等式の解
福田のおもしろ数学178〜ある等式を満たす100個の変数のうちのひとつの変数の最大値
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\displaystyle\frac{a_1^2+a_2^2+...+a_{100}^2}{a_1+a_2+...+a_{100}}$=100 を満たす実数$a_1$の最大値を求めてください。
この動画を見る
$\displaystyle\frac{a_1^2+a_2^2+...+a_{100}^2}{a_1+a_2+...+a_{100}}$=100 を満たす実数$a_1$の最大値を求めてください。
福田のおもしろ数学174〜ルートの付いた数値の計算
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\displaystyle\left(\frac{\sqrt{39}+\sqrt 3}{\sqrt{12}}\right)^7$ を計算してください。
この動画を見る
$\displaystyle\left(\frac{\sqrt{39}+\sqrt 3}{\sqrt{12}}\right)^7$ を計算してください。
福田のおもしろ数学173〜多重のルートで示される数
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#鹿児島県公立高校入試
指導講師:
福田次郎
問題文全文(内容文):
$\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{...}}}}$ を求めなさい。
この動画を見る
$\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{...}}}}$ を求めなさい。