データの分析
福田の数学〜慶應義塾大学2024年看護医療学部第5問〜散布図と相関係数と分散
単元:
#データの分析#データの分析#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 下図(※動画参照)は、あるクラスの40人の生徒の数学と理科の試験得点の散布図である。
データ点の近くの数値はそのデータ点の生徒の出席番号である。
(1)数学と理科の合計得点が最も高い生徒の出席番号は$\boxed{\ \ ヒ\ \ }$である。また、数学と理科の得点差の絶対値が最も大きい生徒の出席番号は$\boxed{\ \ フ\ \ }$である。
(2)数学と理科それぞれの得点の平均値を$\bar{x}$, $\bar{y}$、標準偏差を$s_x$, $s_y$、数学と理科の得点の共分散を$s_{xy}$と表すと、これらの数値は以下であった。
$\bar{x}$=67.7, $\bar{y}$=70.9, $s_x$=14.9, $s_y$=11.5, $s_{xy}$=115.7
数学の得点と理科の得点の相関係数は$\boxed{\ \ ヘ\ \ }$である。なお、答えは小数第3位を四捨五入し、小数第2位まで求めなさい。
(3)各生徒の数学の得点を$x_1$, $x_2$, ..., $x_{40}$、理科の得点を$y_1$, $y_2$, ..., $y_{40}$で表す。
数学と理科の合計得点$x_1$+$y_1$, $x_2$+$y_2$, ..., $x_{40}$+$y_{40}$の平均値は$\bar{x}$, $\bar{y}$を用いると$\boxed{\ \ ホ\ \ }$と表せる。合計得点の分散は、
$\displaystyle\frac{1}{40}\sum_{i=1}^{40}\left(x_i+y_i-\boxed{\ ホ\ }\right)^2$
であるから、これを式変形すると、合計得点の分散は、$s_x$, $s_y$, $s_{xy}$を用いて$\boxed{\ \ マ\ \ }$と表せる。これらの式に(2)で与えられた数値を入れて計算すると、数学と理科の合計得点の平均値は$\boxed{\ \ ミ\ \ }$、分散は$\boxed{\ \ ム\ \ }$である。なお、答えは小数第2位を四捨五入し、小数第1位まで求めなさい。
この動画を見る
$\Large\boxed{5}$ 下図(※動画参照)は、あるクラスの40人の生徒の数学と理科の試験得点の散布図である。
データ点の近くの数値はそのデータ点の生徒の出席番号である。
(1)数学と理科の合計得点が最も高い生徒の出席番号は$\boxed{\ \ ヒ\ \ }$である。また、数学と理科の得点差の絶対値が最も大きい生徒の出席番号は$\boxed{\ \ フ\ \ }$である。
(2)数学と理科それぞれの得点の平均値を$\bar{x}$, $\bar{y}$、標準偏差を$s_x$, $s_y$、数学と理科の得点の共分散を$s_{xy}$と表すと、これらの数値は以下であった。
$\bar{x}$=67.7, $\bar{y}$=70.9, $s_x$=14.9, $s_y$=11.5, $s_{xy}$=115.7
数学の得点と理科の得点の相関係数は$\boxed{\ \ ヘ\ \ }$である。なお、答えは小数第3位を四捨五入し、小数第2位まで求めなさい。
(3)各生徒の数学の得点を$x_1$, $x_2$, ..., $x_{40}$、理科の得点を$y_1$, $y_2$, ..., $y_{40}$で表す。
数学と理科の合計得点$x_1$+$y_1$, $x_2$+$y_2$, ..., $x_{40}$+$y_{40}$の平均値は$\bar{x}$, $\bar{y}$を用いると$\boxed{\ \ ホ\ \ }$と表せる。合計得点の分散は、
$\displaystyle\frac{1}{40}\sum_{i=1}^{40}\left(x_i+y_i-\boxed{\ ホ\ }\right)^2$
であるから、これを式変形すると、合計得点の分散は、$s_x$, $s_y$, $s_{xy}$を用いて$\boxed{\ \ マ\ \ }$と表せる。これらの式に(2)で与えられた数値を入れて計算すると、数学と理科の合計得点の平均値は$\boxed{\ \ ミ\ \ }$、分散は$\boxed{\ \ ム\ \ }$である。なお、答えは小数第2位を四捨五入し、小数第1位まで求めなさい。
【わかりやすく】平均値・中央値・最頻値の求め方を解説!(数学A 整数の性質)
単元:
#数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次のデータは16人の生徒の小テストの点数である。
4,6,5,4,6,3,3,10,4,6,10,6,9,5,5,10
(1)平均値を求めよ。
(2)中央値を求めよ。
(3)最頻値を求めよ。
この動画を見る
次のデータは16人の生徒の小テストの点数である。
4,6,5,4,6,3,3,10,4,6,10,6,9,5,5,10
(1)平均値を求めよ。
(2)中央値を求めよ。
(3)最頻値を求めよ。
中央値と平均値 早稲田本庄2024
単元:
#数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
「1,2,3,4,5,7,10,14,19」から中央値=7,平均値=9となる5コのデータを抜き出し積を作る。
最も大きい積=?
早稲田大学 本庄高等学院2024
この動画を見る
「1,2,3,4,5,7,10,14,19」から中央値=7,平均値=9となる5コのデータを抜き出し積を作る。
最も大きい積=?
早稲田大学 本庄高等学院2024
2024年共通テスト徹底解説〜数学ⅠA第2問(2)データの分析〜福田の入試問題解説
単元:
#数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師:
福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅠA第2問(2)データの分析を徹底解説します
2024共通テスト過去問
この動画を見る
共通テスト2024の数学ⅠA第2問(2)データの分析を徹底解説します
2024共通テスト過去問
【共通テスト】数学IA 第2問でスラスラ解けるテクニック、解説します(2023年本試)
単元:
#数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共通テスト】数学IA 第2問で解けるテクニック、解説動画です
この動画を見る
【共通テスト】数学IA 第2問で解けるテクニック、解説動画です
【データの分析⑧】共通テスト数学に向けて1週間でサクッと復習!【相関係数とグラフ】#データの分析 #相関係数 #グラフ #shorts
【データの分析⑦】共通テスト数学に向けて1週間でサクッと復習!【共分散、相関係数】#データの分析 #共分散 #相関係数 #shorts
平均点 城北
単元:
#数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
A,B,C,Dの得点の平均は80点
A,Bの平均点は78点
A,C,Dの平均点は81点
Aの得点は?
城北高等学校
この動画を見る
A,B,C,Dの得点の平均は80点
A,Bの平均点は78点
A,C,Dの平均点は81点
Aの得点は?
城北高等学校
【データの分析⑥】共通テスト数学に向けて1週間でサクッと復習!【変量の変換】#データの分析 #変量の変換 #高校数学 #shorts
【データの分析④】共通テスト数学に向けて1週間でサクッと復習!【分散】#データの分析 #分散 #高校数学 #shorts
【データの分析③】共通テスト数学に向けて1週間でサクッと復習!【平均値】#データの分析 #平均値 #高校数学 #shorts
【データの分析②】共通テスト数学に向けて1週間でサクッと復習!【箱ひげ図】#データの分析 #箱ひげ図 #高校数学 #shorts
【データの分析①】共通テスト数学に向けて1週間でサクッと復習!【中央値、四分位数】#データの分析 #中央値 #四分位数 #shorts
数学どうにかしたい人へ
単元:
#数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る
数学が共通テストのみの人の勉強法紹介動画です
福田の数学〜消去法の活用〜明治大学2023年全学部統一ⅠⅡAB第1問(3)〜データの分析中央値と平均
単元:
#数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$
(3)データAの大きさは15であり、データAの値は1,2,3,4,5のいずれかであるとする。
1,2,3,4,5のそれぞれを階級値であると考えたとき、その度数はどれも1以上であるとする。階級値1の度数が2、データAの中央値が2、データAの平均値がちょうど3であるとき、階級値5の度数は$\boxed{\ \ サ\ \ }$である。
この動画を見る
$\Large{\boxed{1}}$
(3)データAの大きさは15であり、データAの値は1,2,3,4,5のいずれかであるとする。
1,2,3,4,5のそれぞれを階級値であると考えたとき、その度数はどれも1以上であるとする。階級値1の度数が2、データAの中央値が2、データAの平均値がちょうど3であるとき、階級値5の度数は$\boxed{\ \ サ\ \ }$である。
中央値 2023中央大附属
単元:
#数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
15,a,20,b,11,24
平均値=17 , 中央値=16.5
a=? b=?
(ただし、a<b))
2023中央大学付属高等学校
この動画を見る
15,a,20,b,11,24
平均値=17 , 中央値=16.5
a=? b=?
(ただし、a<b))
2023中央大学付属高等学校
平均は足して2で割るもの。? 近江(滋賀)
単元:
#数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
A組、B組の2クラスでテストを行った。
35人クラスのA組の平均点がa点
40人クラスのB組の平均点がb点
2クラス全体の平均点をa,bで表せ。
近江高等学校
この動画を見る
A組、B組の2クラスでテストを行った。
35人クラスのA組の平均点がa点
40人クラスのB組の平均点がb点
2クラス全体の平均点をa,bで表せ。
近江高等学校
【数Ⅰ】間違えやすい? 分散の公式の覚え方
データの分析 変量変換【ユースケ・マセマティックがていねいに解説】
単元:
#数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
変量xのデータの平均値$x̄$が$35$、分散$Sx^2$が$16$であるとする。この時、次の式によって得られる新しい変量yのデータについて、平均$ȳ$,分散$Sy^2$,標準偏差$Sy$を求めよ。
(1)$y=x-10$
(2)$y=3x$
(3)$y=-\dfrac{1}{2}x+6$
あるクラスの生徒を対象に100点満点の試験を行ったところ,平均値は68点,分散は36であった。得点調整のため,生徒全員の得点を2.5倍して,更に30点を加えたとき,得点調整後の平均値,分散,標準偏差を求めよ。
この動画を見る
変量xのデータの平均値$x̄$が$35$、分散$Sx^2$が$16$であるとする。この時、次の式によって得られる新しい変量yのデータについて、平均$ȳ$,分散$Sy^2$,標準偏差$Sy$を求めよ。
(1)$y=x-10$
(2)$y=3x$
(3)$y=-\dfrac{1}{2}x+6$
あるクラスの生徒を対象に100点満点の試験を行ったところ,平均値は68点,分散は36であった。得点調整のため,生徒全員の得点を2.5倍して,更に30点を加えたとき,得点調整後の平均値,分散,標準偏差を求めよ。
データの分析 不明なデータがある場合の問題【ユースケ・マセマティックがていねいに解説】
単元:
#数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次のデータは、あるパズルに挑戦した10人について、完成するまでにかかった時間x(分)をまとめたものである。ただし、xのデータの平均値を$x̄$で表し、20分を超えた人はいなかったもののとする。次の問いに答えよ。
番号 1 2 3 4 5 6 7 8 9 10
x 13 a 7 3 11 18 7 b 16 3
(x-x̄)² 4 c 16 64 0 d 16 1 25 64
(1) $x̄$の値を求めよ。
(2) aをbの式で表せ。
(3) a、b、c、dの値を求めよ。
(4) xの分散と標準偏差を求めよ。ただし小数第1位を四捨五入せよ。
この動画を見る
次のデータは、あるパズルに挑戦した10人について、完成するまでにかかった時間x(分)をまとめたものである。ただし、xのデータの平均値を$x̄$で表し、20分を超えた人はいなかったもののとする。次の問いに答えよ。
番号 1 2 3 4 5 6 7 8 9 10
x 13 a 7 3 11 18 7 b 16 3
(x-x̄)² 4 c 16 64 0 d 16 1 25 64
(1) $x̄$の値を求めよ。
(2) aをbの式で表せ。
(3) a、b、c、dの値を求めよ。
(4) xの分散と標準偏差を求めよ。ただし小数第1位を四捨五入せよ。
福田の数学〜慶應義塾大学2023年看護医療学部第5問〜散布図と箱ひげ図の関係と相関係数
単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 以下の図は、ある小学校の15人の女子児童の4年生の4月に計測した身長を横軸に、5年生の4月に計測した身長を縦軸にとった散布図である。(※動画参照)
と表すことができる。よってS(a)を最小にするaはa=$\boxed{\ \ ミ\ \ }$である。
S(a)の最小値は、女子児童の4年生のときと6年生のときの身長の相関係数rと$s_y^2$を用いて$\boxed{\ \ ム\ \ }$と表せる。
また、左の散布図で示した女子児童の計測値を計算すると
$s_x^2$=29.00, $s_y^2$=42.65, $s_{xy}$=31.69
であった。これらを用いてS(a)を最小にするaを計算し、小数第4位を四捨五入すると$\boxed{\ \ メ\ \ }$である。
2023慶應義塾大学看護医療学部過去問
この動画を見る
$\Large\boxed{5}$ 以下の図は、ある小学校の15人の女子児童の4年生の4月に計測した身長を横軸に、5年生の4月に計測した身長を縦軸にとった散布図である。(※動画参照)
と表すことができる。よってS(a)を最小にするaはa=$\boxed{\ \ ミ\ \ }$である。
S(a)の最小値は、女子児童の4年生のときと6年生のときの身長の相関係数rと$s_y^2$を用いて$\boxed{\ \ ム\ \ }$と表せる。
また、左の散布図で示した女子児童の計測値を計算すると
$s_x^2$=29.00, $s_y^2$=42.65, $s_{xy}$=31.69
であった。これらを用いてS(a)を最小にするaを計算し、小数第4位を四捨五入すると$\boxed{\ \ メ\ \ }$である。
2023慶應義塾大学看護医療学部過去問
データの分析 データが変更されたときの平均、分散の関係【ユースケ・マセマティックがていねいに解説】
単元:
#数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次のデータは、ある6人について、懸垂が何回できたかを記録したものである。
14 11 10 18 16 9(単位は回)
(1) このデータの平均値を求めよ。
(2) このデータには記録ミスがあり、18回は正しくは17回、9回は正しくは10回であった。この誤りを修正した時、このデータの平均値、分散は、修正前から増加するか、減少するか、変化しないかを答えよ。
(3)(2)の修正後、他の1人の生徒について同じように懸垂の記録を取ったところ、13回であった。この生徒を加えた7人のデータの分散は、加える前と比較して増加するか、減少するか、変化しないかを答えよ。
この動画を見る
次のデータは、ある6人について、懸垂が何回できたかを記録したものである。
14 11 10 18 16 9(単位は回)
(1) このデータの平均値を求めよ。
(2) このデータには記録ミスがあり、18回は正しくは17回、9回は正しくは10回であった。この誤りを修正した時、このデータの平均値、分散は、修正前から増加するか、減少するか、変化しないかを答えよ。
(3)(2)の修正後、他の1人の生徒について同じように懸垂の記録を取ったところ、13回であった。この生徒を加えた7人のデータの分散は、加える前と比較して増加するか、減少するか、変化しないかを答えよ。
データの分析 平均と分散だけ与えられたデータ【ユースケ・マセマティックがていねいに解説】
単元:
#数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
20個の値からなるデータがあり、そのうちの8個の値の平均値は3,分散は4、残りの12個の値の平均値は8、分散は9である。
(1)このデータの平均値を求めよ。
(2)このデータの分散を求めよ。
この動画を見る
20個の値からなるデータがあり、そのうちの8個の値の平均値は3,分散は4、残りの12個の値の平均値は8、分散は9である。
(1)このデータの平均値を求めよ。
(2)このデータの分散を求めよ。
データの分析 欠けたデータの推測【ユースケ・マセマティックがていねいに解説】
単元:
#数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次のデータは、ある8店舗での1kgあたりのみかんの価格である。ただし、aの値は0以上の整数である。
525 550 498 550 555 500 a (単位は円)
(1)aの値がわからないとき、このデータの中央値として何通りの値があり得るか。
(2)このデータの平均値が535円であるとき、このデータの中央値を求めよ。
この動画を見る
次のデータは、ある8店舗での1kgあたりのみかんの価格である。ただし、aの値は0以上の整数である。
525 550 498 550 555 500 a (単位は円)
(1)aの値がわからないとき、このデータの中央値として何通りの値があり得るか。
(2)このデータの平均値が535円であるとき、このデータの中央値を求めよ。
データの分析 データの中に誤りがあった場合【ユースケ・マセマティックがていねいに解説】
単元:
#数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
ある高校で、エコ活動としてペットボトルのキャップを集めている。次のデータは、1か月ごとに集まったキャップの重量を半年間記録したものである。
3.2 1.2 2.3 2.0 2.7 2.4 (単位はkg)
(1)中央値と平均値を求めよ。
(2)上記の6個のうち1個が誤りであることが分かった。正しい数値に基づく中央値と平均値は、それぞれ2.55kgと2.4kgであるという。誤っている数値を選び、正しい数値を求めよ。
この動画を見る
ある高校で、エコ活動としてペットボトルのキャップを集めている。次のデータは、1か月ごとに集まったキャップの重量を半年間記録したものである。
3.2 1.2 2.3 2.0 2.7 2.4 (単位はkg)
(1)中央値と平均値を求めよ。
(2)上記の6個のうち1個が誤りであることが分かった。正しい数値に基づく中央値と平均値は、それぞれ2.55kgと2.4kgであるという。誤っている数値を選び、正しい数値を求めよ。
データの分析 度数分布表【ユースケ・マセマティックがていねいに解説】
単元:
#数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
右の表は25人の生徒のテストの得点のデータから作った度数分布表である。
(1)このデータの平均値のとり得る範囲を求めよ。
(2)60点以上69点以下の階級に含まれる値が次ののようであるとき、全体のデータの中央値を求めよ。
68 63 66 62 68 63 67 65
この動画を見る
右の表は25人の生徒のテストの得点のデータから作った度数分布表である。
(1)このデータの平均値のとり得る範囲を求めよ。
(2)60点以上69点以下の階級に含まれる値が次ののようであるとき、全体のデータの中央値を求めよ。
68 63 66 62 68 63 67 65
データの分析 平均点からデータを求める【ユースケ・マセマティックがていねいに解説】
単元:
#数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次のデータは、ある体操競技会に参加した10人のある種目の得点である。
13.2 13.0 13.7 12.5 14.6 12.3 12.5 11.9 13.9 a (単位は点)
このデータの平均値が13.1点であるとき、aの値を求めよ。
この動画を見る
次のデータは、ある体操競技会に参加した10人のある種目の得点である。
13.2 13.0 13.7 12.5 14.6 12.3 12.5 11.9 13.9 a (単位は点)
このデータの平均値が13.1点であるとき、aの値を求めよ。
福田の数学〜慶應義塾大学2023年薬学部第3問〜データの分析と相関係数
単元:
#数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ ある病院に入院中の患者20人について、ある検査値と、薬Xと薬Yの使用量との関係について調べた。その結果をまとめたものが以下の表であり、斜線は薬を使用していないことを示す。
(1)薬Xのみを使用している患者の検査値の平均値は$\boxed{\ \ ネ\ \ }$(mg/dL)、薬Yのみを使用している患者の検査値の平均値は$\boxed{\ \ ノ\ \ }$(mg/dL)である。
したがって、薬Xと薬Yのどちらも使用していない患者の検査値の平均と比べ、薬Xのみを使用している患者の検査値の平均値は$\boxed{\ \ ハ\ \ }$、薬Yのみを使用している患者の検査値の平均値は$\boxed{\ \ ヒ\ \ }$。
(2)薬Xと薬Yを併用している患者の検査値の第1四分位数は$\boxed{\ \ フ\ \ }$(mg/dL)、第3四分位数は$\boxed{\ \ ヘ\ \ }$(mg/dL)である。
(3)薬Xの使用量と検査値との相関係数は、薬Xのみを使用している場合は0.78であり、薬Xと薬Yを併用している場合は$\boxed{\ \ ホ\ \ }$である。
よって薬Xと薬Yを併用すると、薬Xの使用量と検査値の相関係数が$\boxed{\ \ マ\ \ }$と考えられる。
なお下線部の0.78は、小数第3位を四捨五入した値である。
ただし、$\sqrt 2$=1.41, $\sqrt 5$=2.23, $\sqrt{30}$=5.48, $\sqrt{101}$=10.05として計算しなさい。
2023慶應義塾大学薬学部過去問
この動画を見る
$\Large\boxed{3}$ ある病院に入院中の患者20人について、ある検査値と、薬Xと薬Yの使用量との関係について調べた。その結果をまとめたものが以下の表であり、斜線は薬を使用していないことを示す。
(1)薬Xのみを使用している患者の検査値の平均値は$\boxed{\ \ ネ\ \ }$(mg/dL)、薬Yのみを使用している患者の検査値の平均値は$\boxed{\ \ ノ\ \ }$(mg/dL)である。
したがって、薬Xと薬Yのどちらも使用していない患者の検査値の平均と比べ、薬Xのみを使用している患者の検査値の平均値は$\boxed{\ \ ハ\ \ }$、薬Yのみを使用している患者の検査値の平均値は$\boxed{\ \ ヒ\ \ }$。
(2)薬Xと薬Yを併用している患者の検査値の第1四分位数は$\boxed{\ \ フ\ \ }$(mg/dL)、第3四分位数は$\boxed{\ \ ヘ\ \ }$(mg/dL)である。
(3)薬Xの使用量と検査値との相関係数は、薬Xのみを使用している場合は0.78であり、薬Xと薬Yを併用している場合は$\boxed{\ \ ホ\ \ }$である。
よって薬Xと薬Yを併用すると、薬Xの使用量と検査値の相関係数が$\boxed{\ \ マ\ \ }$と考えられる。
なお下線部の0.78は、小数第3位を四捨五入した値である。
ただし、$\sqrt 2$=1.41, $\sqrt 5$=2.23, $\sqrt{30}$=5.48, $\sqrt{101}$=10.05として計算しなさい。
2023慶應義塾大学薬学部過去問
【中学数学】数学用語チェック絵本vol.7 データの分析と活用
【短時間でマスター!!】分散・標準偏差の求め方を解説!〔現役塾講師解説、数学〕
単元:
#数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
数学1A
分散・標準偏差
3,7,9,6,4,7
①分散
②標準偏差
この動画を見る
数学1A
分散・標準偏差
3,7,9,6,4,7
①分散
②標準偏差