数Ⅰ

小学生向け問題

【短時間でマスター!!】連立2次不等式の書き方を解説!〔現役講師解説、数学〕

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + 3x + 2 > 0 \\
x^2 + 2x - 3 < 0
\end{array}
\right.
\end{eqnarray}$
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + 3x + 2 > 0 \\
x^2 + 2x - 3 < 0
\end{array}
\right.
\end{eqnarray}$
【数学】2022年度 第2回 K塾記述高2模試 全問解説(ベクトルはおまけ)、※修正箇所:問1(1)(概要欄へ)

単元:
#数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#複素数と方程式#図形と計量#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#2次方程式と2次不等式#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#確率#図形と方程式#三角関数#複素数#三角関数とグラフ#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
理数個別チャンネル
問題文全文(内容文):
2022年度第2回全統記述高2模試全問解説動画です!
この動画を見る
2022年度第2回全統記述高2模試全問解説動画です!
【三角比の基本】三角比の値の求め方を解説(数学Ⅰ)

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の三角比の表を完成させよ。
この動画を見る
次の三角比の表を完成させよ。
頭の体操に。因数分解せよ

【テスト対策】三角比の相互関係をわかりやすく解説!

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$A$は鋭角とする。
$\sin A=\displaystyle \frac{2}{3}$のとき、$\cos A,\tan A$の値を求めよ。
この動画を見る
$A$は鋭角とする。
$\sin A=\displaystyle \frac{2}{3}$のとき、$\cos A,\tan A$の値を求めよ。
式の値

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$x=\sqrt 2 -1$ , $xy= -1$のとき
$x^3+x^2y+xy^2+y^3=?$
この動画を見る
$x=\sqrt 2 -1$ , $xy= -1$のとき
$x^3+x^2y+xy^2+y^3=?$
福田の数学〜千葉大学2023年第3問〜2次関数と定積分で表された関数

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 以下の問いに答えよ。
(1)$p$を実数とする。曲線$y$=|$x^2$+$x$-2|と直線$y$=$x$+$p$ の共有点の個数を求めよ。
(2)等式$f(x)$=$x^2$+$\displaystyle\int_{-1}^2(xf(t)-t)dt$ を満たす関数$f(x)$を求めよ。
この動画を見る
$\Large\boxed{3}$ 以下の問いに答えよ。
(1)$p$を実数とする。曲線$y$=|$x^2$+$x$-2|と直線$y$=$x$+$p$ の共有点の個数を求めよ。
(2)等式$f(x)$=$x^2$+$\displaystyle\int_{-1}^2(xf(t)-t)dt$ を満たす関数$f(x)$を求めよ。
一工夫必要なBBB

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\dfrac{1}{1!3}+\dfrac{1}{2!4}+\dfrac{1}{3!5}+・・・+\dfrac{1}{2021!2023}$
この動画を見る
$\dfrac{1}{1!3}+\dfrac{1}{2!4}+\dfrac{1}{3!5}+・・・+\dfrac{1}{2021!2023}$
気付ける男は一味違う。面積比

【短時間でマスター!!】3元1次方程式を使った2次関数の決定解説!〔現役講師解説、数学〕

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
数学1A
グラフが3点(1,3)(2,5)(3,9)を通るような2次関数は?
この動画を見る
数学1A
グラフが3点(1,3)(2,5)(3,9)を通るような2次関数は?
三角比の不等式

単元:
#数Ⅰ#数と式#図形と計量#一次不等式(不等式・絶対値のある方程式・不等式)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
不等式を解け
$sinθ \leqq cosθ$
$(0° \leqq θ < 360°)$
この動画を見る
不等式を解け
$sinθ \leqq cosθ$
$(0° \leqq θ < 360°)$
2つの円 土佐高校

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
2つの円の中心間の距離=4㎝
台形ABCD=16㎠
△TBD=9㎠
2つの円の半径はそれぞれ何㎝?
*図は動画内参照
土佐高等学校
この動画を見る
2つの円の中心間の距離=4㎝
台形ABCD=16㎠
△TBD=9㎠
2つの円の半径はそれぞれ何㎝?
*図は動画内参照
土佐高等学校
大学入試問題#597「難しくはないと思う」 大阪教育大学(2014) #命題②

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師:
ますただ
問題文全文(内容文):
$\alpha=\sqrt[ 3 ]{ 2 }$(が無理数は使用可)
$\alpha^2+p\alpha+q=0$を満たす有理数$p,q$が存在しなことを示せ
出典:2015年大阪教育大学 入試問題
この動画を見る
$\alpha=\sqrt[ 3 ]{ 2 }$(が無理数は使用可)
$\alpha^2+p\alpha+q=0$を満たす有理数$p,q$が存在しなことを示せ
出典:2015年大阪教育大学 入試問題
米国選抜数学試験

単元:
#数学検定・数学甲子園・数学オリンピック等#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
1990米国選抜数学試験
a,b,x,yは実数
$ax+by=3$
$ax^2+by^2=7$
$ax^3+by^3=16$
$ax^4+by^4=42$
$ax^5+by^5=?$
この動画を見る
1990米国選抜数学試験
a,b,x,yは実数
$ax+by=3$
$ax^2+by^2=7$
$ax^3+by^3=16$
$ax^4+by^4=42$
$ax^5+by^5=?$
因数分解 昭和秀英

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^3y^3+18-9xy -2x^2 y^2$
昭和学院秀英高等学校
この動画を見る
因数分解せよ
$x^3y^3+18-9xy -2x^2 y^2$
昭和学院秀英高等学校
大学入試問題#596「√2のいとこ」 大阪教育大学(2014) #命題①

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師:
ますただ
問題文全文(内容文):
$\sqrt[ 3 ]{ 2 }$は無理数であることを示せ
出典:2015年大阪教育大学 入試問題
この動画を見る
$\sqrt[ 3 ]{ 2 }$は無理数であることを示せ
出典:2015年大阪教育大学 入試問題
Xが消える 不等式

小学生にも解ける?

角の二等分線と面積比

単元:
#数Ⅰ#数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
△ABD:△ACD=?
*図は動画内参照
この動画を見る
△ABD:△ACD=?
*図は動画内参照
受験テクニックを学べ!!座標平面上の平行四辺形 鎌倉学園 (改)

解の公式でなくて,解ける? 平方完成による解き方 市川高校

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$2x^2-6x+1=0$
$(x-▢)^2=▢$
$x=▢$
市川高等学校
この動画を見る
$2x^2-6x+1=0$
$(x-▢)^2=▢$
$x=▢$
市川高等学校
【問題を使いながらその場で解説!!】テストや模試で活きる数学の答案の作り方〔現役講師解説、数学〕

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
$a$は定数とする。$0≦x≦4$における関数$f(x)=x^2-2ax+3a$について、次のものを求めよ。
(1)最大値
(2)最小値
この動画を見る
$a$は定数とする。$0≦x≦4$における関数$f(x)=x^2-2ax+3a$について、次のものを求めよ。
(1)最大値
(2)最小値
ただの連立二元三次方程式

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
x,yは実数
\begin{eqnarray}
\left\{
\begin{array}{l}
(x + y)(x^2+y^2) = 520 \\
(x-y)(x^2-y^2) = 40
\end{array}
\right.
\end{eqnarray}
この動画を見る
x,yは実数
\begin{eqnarray}
\left\{
\begin{array}{l}
(x + y)(x^2+y^2) = 520 \\
(x-y)(x^2-y^2) = 40
\end{array}
\right.
\end{eqnarray}
【場合分け】文字係数の2次不等式を丁寧に解説!

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$a$を定数とするとき、次の2次不等式を解け。
$x^2-(a+3)x+3a \lt 0$
この動画を見る
$a$を定数とするとき、次の2次不等式を解け。
$x^2-(a+3)x+3a \lt 0$
福田の数学〜立教大学2023年経済学部第1問(7)〜集合と座標平面

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (7)座標平面の3つの部分集合
A=$\left\{(x, -2x+2)|xは実数, x<0\right\}$
B=$\left\{(x, 2x+2)|xは実数, x≧0\right\}$
C=$\left\{(x, -x+3)|xは実数\right\}$
に対し、(A$\cup$B)$\cap$C に属する点の座標をすべて求めると$\boxed{\ \ キ\ \ }$である。
この動画を見る
$\Large\boxed{1}$ (7)座標平面の3つの部分集合
A=$\left\{(x, -2x+2)|xは実数, x<0\right\}$
B=$\left\{(x, 2x+2)|xは実数, x≧0\right\}$
C=$\left\{(x, -x+3)|xは実数\right\}$
に対し、(A$\cup$B)$\cap$C に属する点の座標をすべて求めると$\boxed{\ \ キ\ \ }$である。
【数Ⅰ】図形と計量:三角比:【超重要】斜辺と角から線分の長さを求める!

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
【超重要】直角三角形の「斜辺」と「角」を用いて他の辺を表せ!
この動画を見る
【超重要】直角三角形の「斜辺」と「角」を用いて他の辺を表せ!
福田の数学〜立教大学2023年経済学部第1問(6)〜関数方程式

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (6)2次式$f(x)$が$f(f(x))$=$f(x)^2$+1 を満たすとき$f(x)$=$\boxed{\ \ カ\ \ }$である。
この動画を見る
$\Large\boxed{1}$ (6)2次式$f(x)$が$f(f(x))$=$f(x)^2$+1 を満たすとき$f(x)$=$\boxed{\ \ カ\ \ }$である。
【わかりやすく解説】連立不等式の解き方

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の連立不等式を解け。
(1)
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2+2x-3 \lt 0 \\
2x^2+x-1 \gt 0
\end{array}
\right.
\end{eqnarray}$
(2)
$x^2+1 \leqq 4x \leqq x^2+5x-2$
この動画を見る
次の連立不等式を解け。
(1)
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2+2x-3 \lt 0 \\
2x^2+x-1 \gt 0
\end{array}
\right.
\end{eqnarray}$
(2)
$x^2+1 \leqq 4x \leqq x^2+5x-2$
福田の数学〜立教大学2023年経済学部第1問(3)〜三角形を解く

単元:
#数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)三角形ABCにおいてAB=AC=4, BC=6とする。AB上の点PがCP=5を満たすとき、AP=$\boxed{\ \ ウ\ \ }$である。
この動画を見る
$\Large\boxed{1}$ (3)三角形ABCにおいてAB=AC=4, BC=6とする。AB上の点PがCP=5を満たすとき、AP=$\boxed{\ \ ウ\ \ }$である。