数Ⅰ
福田の共通テスト直前演習〜2021年共通テスト数学IA問題1[1]。2次方程式の解に関する問題。
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} [1]cを正の定数とする。xの2次方程式\\
2x^2+(4c-3)x+2c^2-c-11=0 \ldots①\\
について考える。\\
(1)c=1のとき、①の左辺を因数分解すると(\boxed{\ \ ア\ \ }\ x+\boxed{\ \ イ\ \ })(x-\boxed{\ \ ウ\ \ })であるから、\\
①の解はx=-\frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ア\ \ }}, \boxed{\ \ ウ\ \ }である。\\
\\
\\
(2)c=2のとき、①の解はx=\frac{-\ \boxed{\ \ エ\ \ }±\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キ\ \ }} であり、大きい方の解を\alphaとすると\\
\frac{5}{\alpha}=\frac{\boxed{\ \ ク\ \ }+\sqrt{\boxed{\ \ ケコ\ \ }}}{\boxed{\ \ サ\ \ }}である。また、m \lt \frac{5}{\alpha} \lt m+1を満たす整数mは\boxed{\ \ シ\ \ }である。\\
\\
\\
(3)太郎さんと花子さんは、①の解について考察している。\\
太郎:①の解はcの値によって、ともに有理数である場合もあれば、ともに無理数\\
である場合もあるね。cがどのような値のときに、解は有理数になるのかな。\\
花子:2次方程式の解の公式の根号の中に着目すればいいんじゃないかな。 \\
\\
①の解が異なる2つの有理数であるような正の整数cの個数は\boxed{\ \ ス\ \ }個である。
\end{eqnarray}
2021共通テスト数学過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} [1]cを正の定数とする。xの2次方程式\\
2x^2+(4c-3)x+2c^2-c-11=0 \ldots①\\
について考える。\\
(1)c=1のとき、①の左辺を因数分解すると(\boxed{\ \ ア\ \ }\ x+\boxed{\ \ イ\ \ })(x-\boxed{\ \ ウ\ \ })であるから、\\
①の解はx=-\frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ア\ \ }}, \boxed{\ \ ウ\ \ }である。\\
\\
\\
(2)c=2のとき、①の解はx=\frac{-\ \boxed{\ \ エ\ \ }±\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キ\ \ }} であり、大きい方の解を\alphaとすると\\
\frac{5}{\alpha}=\frac{\boxed{\ \ ク\ \ }+\sqrt{\boxed{\ \ ケコ\ \ }}}{\boxed{\ \ サ\ \ }}である。また、m \lt \frac{5}{\alpha} \lt m+1を満たす整数mは\boxed{\ \ シ\ \ }である。\\
\\
\\
(3)太郎さんと花子さんは、①の解について考察している。\\
太郎:①の解はcの値によって、ともに有理数である場合もあれば、ともに無理数\\
である場合もあるね。cがどのような値のときに、解は有理数になるのかな。\\
花子:2次方程式の解の公式の根号の中に着目すればいいんじゃないかな。 \\
\\
①の解が異なる2つの有理数であるような正の整数cの個数は\boxed{\ \ ス\ \ }個である。
\end{eqnarray}
2021共通テスト数学過去問
息抜き
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a^2-3a+1=0$のとき,$a^6+\dfrac{1}{a^6}$の値を求めよ.
この動画を見る
$a^2-3a+1=0$のとき,$a^6+\dfrac{1}{a^6}$の値を求めよ.
ただ二重根号を外すだけ
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt{2065+180\sqrt{10}}$
これを求めよ.
この動画を見る
$\sqrt{2065+180\sqrt{10}}$
これを求めよ.
こう見えても慶應義塾
単元:
#数学(中学生)#中3数学#平方根#数Ⅰ#数A#数と式#場合の数と確率#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
絶対値が2になる数と49の平方根の和は何通り?
慶應義塾高等学校
この動画を見る
絶対値が2になる数と49の平方根の和は何通り?
慶應義塾高等学校
【数Ⅰ】図形と計量:正四面体の体積を一瞬で求める方法
単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
【中学数学 三平方の定理 立体図形】
1辺の長さがaの正四面体の体積を求めよ
この動画を見る
【中学数学 三平方の定理 立体図形】
1辺の長さがaの正四面体の体積を求めよ
【理数個別の過去問解説】2021年度 神奈川大学給費生入試 文系数学 第2問解説
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#神奈川大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
aを正の定数とする。区間$0\leqq x\leqq 1$で定義された関数$ y = x^2 ‐ ax + a$ について、次の問いに答えよ。
(1) この区間におけるyの最大値と最小値をaを用いて表せ。
(2) yの最小値が$\dfrac{7}{16}$となるようなaに対し、yの最大値を求めよ。
この動画を見る
aを正の定数とする。区間$0\leqq x\leqq 1$で定義された関数$ y = x^2 ‐ ax + a$ について、次の問いに答えよ。
(1) この区間におけるyの最大値と最小値をaを用いて表せ。
(2) yの最小値が$\dfrac{7}{16}$となるようなaに対し、yの最大値を求めよ。
4乗根の分母の有理化
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
分母の有理化をせよ.
$\dfrac{1}{\sqrt[4]{8}+\sqrt2+\sqrt[4]{2}+1}$
この動画を見る
分母の有理化をせよ.
$\dfrac{1}{\sqrt[4]{8}+\sqrt2+\sqrt[4]{2}+1}$
単位円周上には無限の有理点
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
単位円周上に$x$座標,$y$座標ともに有理数である点は無限に存在することを示せ.
この動画を見る
単位円周上に$x$座標,$y$座標ともに有理数である点は無限に存在することを示せ.
【共通テスト】数学IA 第2問を瞬時に解くテクニックを解説します(2021.本試験)
単元:
#数Ⅰ#数A#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
(1)
ストライドを$x$、ピッチを$z$とおく。
ピッチは1秒あたりの少数、ストライドは1歩あたりの進む距離なので、1秒あたりの進む距離すなわち平均速度は、$x$と$z$を用いて[ア](m/秒)と表される。
これより、タイムと、ストライド、ピッチとの関係は
タイム=$\displaystyle \frac{100}{[ア]}$
と表されるので、[ア]が最大になるときにタイムが最もよくなる。
ただし、タイムがよくなるとは、タイムの値が小さくなることである。
[ア]を以下から選べ。
⓪$x+z$
①$z-x$
②$xz$
③$\displaystyle \frac{x+z}{[2]}$
④$\displaystyle \frac{z-x}{[2]}$
⑤$\displaystyle \frac{xz}{[2]}$
(2)
男子短距離100m走の選手である太郎さんは、①に着目して、タイムが最もよくなるストライドとピッチを考えることにした。
次の表は、太郎さんが練習で100mを3回走ったときのストライドとピッチのデータである。
-----------------
1回目 2回目 3回目
ストライド 2.05 2.10 2.15
ピッチ 4,70 4.60 4.50
-----------------
また、ストライドとピッチにはそれぞれ限界がある。
太郎さんの場合、ストライドの最大値は2.40、ピッチの最大値は4.80である。
太郎さんは、上の表から、ストライドが0.05大きくなるとピッチが0.1小さくなるという関係があると考えて、ピッチがストライドの1次関数としてなされると仮定した。
このとき、ピッチ$z$はストライド$x$を用いて
$z=[イウ]x+\displaystyle \frac{[エオ]}{5}$ と表される。
②が太郎さんのストライドの最大値2.40とピッチの最大値4.80まで成り立つと仮定すると、$x$の値の範囲は次のようになる。
$[カ].[キク]\leqq x \leqq 2.40$
$y=[ア]$とおく。
②を$y=[ア]$に代入することにより、$y$と$x$の関数として表すことができる。
太郎さんのタイムが最もよくなるストライドとピッチを求めるためには、$[カ].[キク]\leqq x \leqq 2.40$の範囲で$y$の値を最大にする$x$の値を見つければよい。
このとき、$y$の値が最大になるのは$x=[ケ].[コサ]$のときである。
よって、太郎さんのタイムが最もよくなるのは、ストライドが[ケ].[コサ]のときであり、このとき、ピッチは[シ].[スセ]である。
このときの太郎さんのタイムは①により[ソ]である。
[ソ]については、最も適当なものを、次の⓪~⑤のうちから、一つ選べ。
⓪9.68
①9.97
②10.09
③10.33
④10.42
⑤10.55
この動画を見る
(1)
ストライドを$x$、ピッチを$z$とおく。
ピッチは1秒あたりの少数、ストライドは1歩あたりの進む距離なので、1秒あたりの進む距離すなわち平均速度は、$x$と$z$を用いて[ア](m/秒)と表される。
これより、タイムと、ストライド、ピッチとの関係は
タイム=$\displaystyle \frac{100}{[ア]}$
と表されるので、[ア]が最大になるときにタイムが最もよくなる。
ただし、タイムがよくなるとは、タイムの値が小さくなることである。
[ア]を以下から選べ。
⓪$x+z$
①$z-x$
②$xz$
③$\displaystyle \frac{x+z}{[2]}$
④$\displaystyle \frac{z-x}{[2]}$
⑤$\displaystyle \frac{xz}{[2]}$
(2)
男子短距離100m走の選手である太郎さんは、①に着目して、タイムが最もよくなるストライドとピッチを考えることにした。
次の表は、太郎さんが練習で100mを3回走ったときのストライドとピッチのデータである。
-----------------
1回目 2回目 3回目
ストライド 2.05 2.10 2.15
ピッチ 4,70 4.60 4.50
-----------------
また、ストライドとピッチにはそれぞれ限界がある。
太郎さんの場合、ストライドの最大値は2.40、ピッチの最大値は4.80である。
太郎さんは、上の表から、ストライドが0.05大きくなるとピッチが0.1小さくなるという関係があると考えて、ピッチがストライドの1次関数としてなされると仮定した。
このとき、ピッチ$z$はストライド$x$を用いて
$z=[イウ]x+\displaystyle \frac{[エオ]}{5}$ と表される。
②が太郎さんのストライドの最大値2.40とピッチの最大値4.80まで成り立つと仮定すると、$x$の値の範囲は次のようになる。
$[カ].[キク]\leqq x \leqq 2.40$
$y=[ア]$とおく。
②を$y=[ア]$に代入することにより、$y$と$x$の関数として表すことができる。
太郎さんのタイムが最もよくなるストライドとピッチを求めるためには、$[カ].[キク]\leqq x \leqq 2.40$の範囲で$y$の値を最大にする$x$の値を見つければよい。
このとき、$y$の値が最大になるのは$x=[ケ].[コサ]$のときである。
よって、太郎さんのタイムが最もよくなるのは、ストライドが[ケ].[コサ]のときであり、このとき、ピッチは[シ].[スセ]である。
このときの太郎さんのタイムは①により[ソ]である。
[ソ]については、最も適当なものを、次の⓪~⑤のうちから、一つ選べ。
⓪9.68
①9.97
②10.09
③10.33
④10.42
⑤10.55
中学受験算数「資料の活用⑤(最頻値と中央値)」小学4年生~6年生対象【毎日配信】※概要欄をご確認下さい。
単元:
#数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師:
中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
例1 8人の生徒に10点満点の単語テストを実施したら、 以下のようになりました。 10点 8点 7点 7点 8点 10点 3点 7点
(1)最頻値を求めなさい。
(2) 中央値を求めなさい。
例2 次の図はあるクラスの男子20人の体重をヒストグラムで 表したものです。
(1)最頻値を求めなさい。
(2) 中央値の含まれる階段を答えなさい。
*図は動画内参照
この動画を見る
例1 8人の生徒に10点満点の単語テストを実施したら、 以下のようになりました。 10点 8点 7点 7点 8点 10点 3点 7点
(1)最頻値を求めなさい。
(2) 中央値を求めなさい。
例2 次の図はあるクラスの男子20人の体重をヒストグラムで 表したものです。
(1)最頻値を求めなさい。
(2) 中央値の含まれる階段を答えなさい。
*図は動画内参照
平方根 小数部分 成城学園
単元:
#数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$2 \sqrt 3$の小数部分をaとするとき
$a^2+6a-16=?$
成城学園高等学校
この動画を見る
$2 \sqrt 3$の小数部分をaとするとき
$a^2+6a-16=?$
成城学園高等学校
久しぶりの二次関数 基本です。広島県
共通テスト数学1A_第1問を簡単に解く方法教えます
単元:
#数Ⅰ#数A#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
[1]$c$を正の整数とする。$x$の2次方程式
$2x^2+(4c-3)x+2c^2-c-11=0$ について考える。
(1)$c=1$のとき、①の左辺を因数分解すると
$([ア]x+[イ])(x-[ウ])$
であるから、①の解は
$x=-\displaystyle \frac{[イ]}{[ア]},[ウ]$である。
(2)$c=2$のとき、①の解は
$x=\displaystyle \frac{-[エ] \pm \sqrt{ [オカ] }}{[キ]}$
であり、大きい方の解を$a$とすると
$\displaystyle \frac{5}{a}=\displaystyle \frac{[ク] + \sqrt{ [ケコ] }}{[サ]}$
である。また、$m<\displaystyle \frac{5}{a}<m+1$を満たす整数は[シ]である。
(3)太郎さんと花子さんは、①の解について考察している。
-----------------
太郎:①の解は$c$の値によって、ともに有理数である場合もあれば、
ともに無理数である場合もあるね。
$c$がどのような値のときに、解は有理数になるのかな。
花子:2次方程式の解の公式の根号の中に着目すればいいんじゃないかな。
-----------------
①の解が異なる二つの有理数であるような正の整数$c$の個数は[ス]個である。
この動画を見る
[1]$c$を正の整数とする。$x$の2次方程式
$2x^2+(4c-3)x+2c^2-c-11=0$ について考える。
(1)$c=1$のとき、①の左辺を因数分解すると
$([ア]x+[イ])(x-[ウ])$
であるから、①の解は
$x=-\displaystyle \frac{[イ]}{[ア]},[ウ]$である。
(2)$c=2$のとき、①の解は
$x=\displaystyle \frac{-[エ] \pm \sqrt{ [オカ] }}{[キ]}$
であり、大きい方の解を$a$とすると
$\displaystyle \frac{5}{a}=\displaystyle \frac{[ク] + \sqrt{ [ケコ] }}{[サ]}$
である。また、$m<\displaystyle \frac{5}{a}<m+1$を満たす整数は[シ]である。
(3)太郎さんと花子さんは、①の解について考察している。
-----------------
太郎:①の解は$c$の値によって、ともに有理数である場合もあれば、
ともに無理数である場合もあるね。
$c$がどのような値のときに、解は有理数になるのかな。
花子:2次方程式の解の公式の根号の中に着目すればいいんじゃないかな。
-----------------
①の解が異なる二つの有理数であるような正の整数$c$の個数は[ス]個である。
高校入試だけど二重根号
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$x=\sqrt{6+\sqrt{11}} , y=\sqrt{6-\sqrt{11}} $
$(x+y)^2 = ?$
慶應義塾高等学校
この動画を見る
$x=\sqrt{6+\sqrt{11}} , y=\sqrt{6-\sqrt{11}} $
$(x+y)^2 = ?$
慶應義塾高等学校
【数学】平方根:暗算で根号の中身を変形できない生徒がまずするべき考え方
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
平方根:暗算で根号の中身を変形できない生徒がまずするべき考え方に関して解説していきます.
この動画を見る
平方根:暗算で根号の中身を変形できない生徒がまずするべき考え方に関して解説していきます.
無限に続く3乗根
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$3\sqrt{2\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2・・・・・・}}}}}$
$(a)2$
$(b)\sqrt2$
$(c)\sqrt[3]{4}$
これを解け.
この動画を見る
$3\sqrt{2\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2\sqrt[3]{2・・・・・・}}}}}$
$(a)2$
$(b)\sqrt2$
$(c)\sqrt[3]{4}$
これを解け.
【高校数学】摂南大学の過去問演習~代入の問題~【大学受験】
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
摂南大学の過去問演習
この動画を見る
摂南大学の過去問演習
この因数分解できる?
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
因数分解してください
$a^2-b^2-c^2+4a-2bc+4$
この動画を見る
因数分解してください
$a^2-b^2-c^2+4a-2bc+4$
福田のわかった数学〜高校3年生理系105〜絶対不等式(3)
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 絶対不等式(3)\\
0 \leqq x \lt \frac{\pi}{2}であるすべてのxについて\\
\sin x\cos x \leqq kk(\sin^2x+3\cos^2x)\\
が成り立つような実数kの最小値を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 絶対不等式(3)\\
0 \leqq x \lt \frac{\pi}{2}であるすべてのxについて\\
\sin x\cos x \leqq kk(\sin^2x+3\cos^2x)\\
が成り立つような実数kの最小値を求めよ。
\end{eqnarray}
福田のわかった数学〜高校3年生理系104〜絶対不等式(2)
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 絶対不等式(2)\\
\sqrt x+\sqrt y \leqq k\sqrt{2x+y}\\
が任意の正の実数x,yに対して成り立つような実数k\\
の値の範囲を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 絶対不等式(2)\\
\sqrt x+\sqrt y \leqq k\sqrt{2x+y}\\
が任意の正の実数x,yに対して成り立つような実数k\\
の値の範囲を求めよ。
\end{eqnarray}
方程式
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$x^5+\dfrac{1}{x^5}=\dfrac{205}{16}\left(x+\dfrac{1}{x}\right)$
この動画を見る
実数解を求めよ.
$x^5+\dfrac{1}{x^5}=\dfrac{205}{16}\left(x+\dfrac{1}{x}\right)$
直角に凹ませました
福田のわかった数学〜高校3年生理系103〜絶対不等式(1)
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 絶対不等式(1)\\
a^x \geqq x \\
が任意の正の実数xに対して成り立つような\\
正の定数aの値の範囲を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 絶対不等式(1)\\
a^x \geqq x \\
が任意の正の実数xに対して成り立つような\\
正の定数aの値の範囲を求めよ。
\end{eqnarray}
超絶良問 どっちがでかい?その差僅か0.0005
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$\sqrt{2022}+\sqrt{2052}$ vs $\sqrt{2032}+\sqrt{2042}$
この動画を見る
どちらが大きいか?
$\sqrt{2022}+\sqrt{2052}$ vs $\sqrt{2032}+\sqrt{2042}$
単なる計算問題
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt{99910000+\dfrac{81}{4}}$
これを解け.
この動画を見る
$\sqrt{99910000+\dfrac{81}{4}}$
これを解け.
工夫して簡単に!
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを簡単にせよ.
$\dfrac{\sqrt{21}+\sqrt{33}+\sqrt{77}+7}{\sqrt3+2\sqrt 7+\sqrt{11}}$
この動画を見る
これを簡単にせよ.
$\dfrac{\sqrt{21}+\sqrt{33}+\sqrt{77}+7}{\sqrt3+2\sqrt 7+\sqrt{11}}$
長方形といえる? ひし形といえる?
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
○か✖か?
・2本の対角線の長さが等しい四角形は長方形である。
・2本の対角線が垂直に交わっている四角形はひし形である。
この動画を見る
○か✖か?
・2本の対角線の長さが等しい四角形は長方形である。
・2本の対角線が垂直に交わっている四角形はひし形である。
全ての角が等しい六角形は正六角形?
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
○か✖か?
・3つの角がすべて等しい三角形は正三角形
・6つの角がすべて等しい六角形は正六角形
この動画を見る
○か✖か?
・3つの角がすべて等しい三角形は正三角形
・6つの角がすべて等しい六角形は正六角形
失敗しないたすきがけ因数分解
負の数の三乗根
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
${}^3 \sqrt 2 + {}^3 \sqrt {-2}$
この動画を見る
${}^3 \sqrt 2 + {}^3 \sqrt {-2}$