場合の数と確率

京都大 確率 確率でも検算できるぞ

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$1~n$まで番号の書かれた札が各2枚ずつある。$(n \geqq 3)$
[1][1][2][2]…[n][n]
2$n$枚から3枚選んで順に$x_1,x_2,x_3$とする。
$x_1 \lt x_2 \lt x_3$となる確率は?
出典:2012年京都大学 過去問
この動画を見る
$1~n$まで番号の書かれた札が各2枚ずつある。$(n \geqq 3)$
[1][1][2][2]…[n][n]
2$n$枚から3枚選んで順に$x_1,x_2,x_3$とする。
$x_1 \lt x_2 \lt x_3$となる確率は?
出典:2012年京都大学 過去問
【数学】イッパツ理解!確率の「P」と「C」の使い分け!~全国模試1位の勉強法【篠原好】

単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
イッパツ理解!
数学の「確率の「P」と「C」の使い分け」についてお話しています。
この動画を見る
イッパツ理解!
数学の「確率の「P」と「C」の使い分け」についてお話しています。
愛知医科大 確率

単元:
#数A#大学入試過去問(数学)#確率#学校別大学入試過去問解説(数学)#愛知医科大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
1~30の自然数から異なる2つを選んでその積を考える
6の倍数となる確率を求めよ
出典:2011年愛知医科大学 過去問
この動画を見る
1~30の自然数から異なる2つを選んでその積を考える
6の倍数となる確率を求めよ
出典:2011年愛知医科大学 過去問
確率 漸化式 なぜ計算ミスに気づけたか

単元:
#数A#場合の数と確率#確率#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
サイコロをふる
$1\rightarrow:+1$進む
$2~6\rightarrow:+2$進む
原点スタート
$n$回目に偶数上にいる確率を$P_{n}$とする
$P_{n}$を$n$で表せ
この動画を見る
サイコロをふる
$1\rightarrow:+1$進む
$2~6\rightarrow:+2$進む
原点スタート
$n$回目に偶数上にいる確率を$P_{n}$とする
$P_{n}$を$n$で表せ
北海道大 確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
1つのサイコロを投げ続けて、2回連続して同じ目が出たら終了。
(1)
4回以内(4回を含む)に終わる確率は?
(2)
$r$回以内に終わる確率は?
$(r \geqq 2)$
出典:2006年北海道大学 過去問
この動画を見る
1つのサイコロを投げ続けて、2回連続して同じ目が出たら終了。
(1)
4回以内(4回を含む)に終わる確率は?
(2)
$r$回以内に終わる確率は?
$(r \geqq 2)$
出典:2006年北海道大学 過去問
場合の数 数学オリンピック予選

単元:
#数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#場合の数#数学オリンピック#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2001$個の自然数$1,2,3…,2001$の中から何個かの数を選ぶ。
選んだ数の総和が奇数となる選び方は何通りか。
(1個も選ばないときの総和は$0$とする。)
出典:数学オリンピック 予選問題
この動画を見る
$2001$個の自然数$1,2,3…,2001$の中から何個かの数を選ぶ。
選んだ数の総和が奇数となる選び方は何通りか。
(1個も選ばないときの総和は$0$とする。)
出典:数学オリンピック 予選問題
京都大学 サイコロ確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
サイコロを$n$回振って$(n \geqq 2)$出た目の$($最大値$)-($最小値$)=x$とする
(1)
$x=1$となる確率
(2)
$x=5$となる確率
出典:2017年京都大学 過去問
この動画を見る
サイコロを$n$回振って$(n \geqq 2)$出た目の$($最大値$)-($最小値$)=x$とする
(1)
$x=1$となる確率
(2)
$x=5$となる確率
出典:2017年京都大学 過去問
【数A】確率:1個のサイコロを3回投げて出る目の最小値が2以下になる確率

単元:
#数A#場合の数と確率#確率#数学(高校生)
教材:
#サクシード#サクシード数学Ⅰ・A#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
1個のサイコロを3回投げて、出る目の最小値が2以下になる確率を求めよ
この動画を見る
1個のサイコロを3回投げて、出る目の最小値が2以下になる確率を求めよ
【数A】場合の数:青玉が1個、赤玉が6個、白玉が2個あります。これらの玉に糸を通して輪を作る方法は何通りあるか?

単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
円順列?いいえ、数珠順列です!÷2をする必要がある??わかりやすく解説します!
この動画を見る
円順列?いいえ、数珠順列です!÷2をする必要がある??わかりやすく解説します!
茨城大 確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#茨城大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
サイコロを4回振って出た目を順に$a,b,c,d$
(1)
$a^2+b^2+c^2+d^2$が4の倍数になる確率を求めよ
(2)
積$abcd$が4の倍数となる確率を求めよ
出典:2010年茨城大学 過去問
この動画を見る
サイコロを4回振って出た目を順に$a,b,c,d$
(1)
$a^2+b^2+c^2+d^2$が4の倍数になる確率を求めよ
(2)
積$abcd$が4の倍数となる確率を求めよ
出典:2010年茨城大学 過去問
京都大 確率 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
出た目の最大値を$M_{n}$
最小値を$m_{n}$とする
$M_{n}-m_{n} \gt 1$となる確率を求めよ
出典:1986年京都大学 過去問
この動画を見る
出た目の最大値を$M_{n}$
最小値を$m_{n}$とする
$M_{n}-m_{n} \gt 1$となる確率を求めよ
出典:1986年京都大学 過去問
慶應義塾大 場合の数 整数 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#場合の数と確率#整数の性質#場合の数#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x,y,z$は0以上の整数
それぞれ$(x,y,z)$は何組あるか
(1)
$x+y+z=24$
(2)
$x+y+z=24$
$x \leqq y \leqq z$
(3)
$x+2y+3z=24$
出典:2009年慶應義塾 過去問
この動画を見る
$x,y,z$は0以上の整数
それぞれ$(x,y,z)$は何組あるか
(1)
$x+y+z=24$
(2)
$x+y+z=24$
$x \leqq y \leqq z$
(3)
$x+2y+3z=24$
出典:2009年慶應義塾 過去問
【数A】場合の数・確率の極意3選【数学アレルギー必見】解説、授業

単元:
#数A#場合の数と確率#場合の数#確率#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数A】場合の数・確率の極意3選解説動画です
この動画を見る
【数A】場合の数・確率の極意3選解説動画です
大阪教育大 場合の数 自然数を和で表す Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
自然数$n$をそれより小さい自然数の和で表す。
$2=1+1$の1通り
$3=1+1+1,1+2,2+1$の3通り
次の場合それぞれ何通りか。
(1)4
(2)5
(3)$n$
出典:2002年大阪教育大学 過去問
この動画を見る
自然数$n$をそれより小さい自然数の和で表す。
$2=1+1$の1通り
$3=1+1+1,1+2,2+1$の3通り
次の場合それぞれ何通りか。
(1)4
(2)5
(3)$n$
出典:2002年大阪教育大学 過去問
早稲田(理)超簡単 場合の数・漸化式 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$1,2,3$を$n$個並べて$n$桁の数を作る。
1が奇数個使われている数を$a_{n}$個
1が偶数個使われている数を$b_{n}$個
(0個を含む)
(1)
$a_{n+1},b_{n+1}$を$a_{n},b_{n}$を用いて表せ
(2)
$a_{n},b_{n}$を求めよ
出典:1997年早稲田大学 理工学術院 過去問
この動画を見る
$1,2,3$を$n$個並べて$n$桁の数を作る。
1が奇数個使われている数を$a_{n}$個
1が偶数個使われている数を$b_{n}$個
(0個を含む)
(1)
$a_{n+1},b_{n+1}$を$a_{n},b_{n}$を用いて表せ
(2)
$a_{n},b_{n}$を求めよ
出典:1997年早稲田大学 理工学術院 過去問
大阪大 確率 3次式 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
サイコロを3回投げて出た目を順に$l,m,n$として$f(x)=x^3+lx^2+mx+n$について
(1)
$f(x)$が$(x+1)^2$で割り切れる確率は?
(2)
$f(x)$が極大値・極小値もとる確率は?
出典:2012年大阪大学 過去問
この動画を見る
サイコロを3回投げて出た目を順に$l,m,n$として$f(x)=x^3+lx^2+mx+n$について
(1)
$f(x)$が$(x+1)^2$で割り切れる確率は?
(2)
$f(x)$が極大値・極小値もとる確率は?
出典:2012年大阪大学 過去問
条件付き確率

単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
どの人についても、カードの数字が異なる確率は?
(2)
カードの数字が異なる人がいた場合に、カードの数字が同じ人がいる確率は?
この動画を見る
(1)
どの人についても、カードの数字が異なる確率は?
(2)
カードの数字が異なる人がいた場合に、カードの数字が同じ人がいる確率は?
明治大 多項定理 場合の数 Mathematics Japanese university entrance exam

単元:
#数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#式と証明#場合の数#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
明治大学過去問題
同類項は何種類か
$(x+y+z)^{88}$
この動画を見る
明治大学過去問題
同類項は何種類か
$(x+y+z)^{88}$
Japanese Mathematics Olympiad 2017

単元:
#数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#数学オリンピック#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
1⃣
How many pairs of positive whole numbers (a,b)
such that ab=29! , a<b , a&b are coprime.
2⃣
How many sets of positive whole numbers (a,b,c,d,e)
such that all of them are different & a+b=c+d+e=29
この動画を見る
1⃣
How many pairs of positive whole numbers (a,b)
such that ab=29! , a<b , a&b are coprime.
2⃣
How many sets of positive whole numbers (a,b,c,d,e)
such that all of them are different & a+b=c+d+e=29
日本女子大 ビンゴ!の確率(ついてる人&ついてない人) Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#日本女子大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
日本女子大学過去問題
5×5マスの方眼紙の各マスに1~25の数字をでたらめに配置して1から順に穴を開ける
(1)1~5の番号に穴を開けたとき、穴が縦又は横に5つ並ぶ確率
(2)21まで開けたとき初めて穴が縦又は横に5つ並ぶ確率
この動画を見る
日本女子大学過去問題
5×5マスの方眼紙の各マスに1~25の数字をでたらめに配置して1から順に穴を開ける
(1)1~5の番号に穴を開けたとき、穴が縦又は横に5つ並ぶ確率
(2)21まで開けたとき初めて穴が縦又は横に5つ並ぶ確率
日本女子大 ビンゴ!の確率(ついてる人&ついてない人) Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#日本女子大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$5\times 5$マスの方眼紙の各マスに1~25の数字をでたらめに配置して1から順に穴を開ける.
(1)1~5の番号に穴を開けたとき,穴が縦又は横に5つ並ぶ確率を求めよ.
(2)21まで開けたとき初めて穴が縦又は横に5つ並ぶ確率を求めよ.
日本女子大過去問
この動画を見る
$5\times 5$マスの方眼紙の各マスに1~25の数字をでたらめに配置して1から順に穴を開ける.
(1)1~5の番号に穴を開けたとき,穴が縦又は横に5つ並ぶ確率を求めよ.
(2)21まで開けたとき初めて穴が縦又は横に5つ並ぶ確率を求めよ.
日本女子大過去問
山口大(医)場合の数(東大類題)高校数学 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#場合の数と確率#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
'03山口大学過去問題
m個の玉(区別無し)を袋A,B,Cに入れる。
A,B,Cに入れる個数をそれぞれx,y,z個
(1)m=18 $x>y>z \geqq 0$ 何通りか
(2)m=6n $x>y>z \geqq 0$ 何通りか、nで表せ
この動画を見る
'03山口大学過去問題
m個の玉(区別無し)を袋A,B,Cに入れる。
A,B,Cに入れる個数をそれぞれx,y,z個
(1)m=18 $x>y>z \geqq 0$ 何通りか
(2)m=6n $x>y>z \geqq 0$ 何通りか、nで表せ
数学オリンピック 予選の簡単な問題

単元:
#数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
数学オリンピック予選
$1^{2001}+2^{2001}+3^{2001}+\cdots+2000^{2001}+$
$2001^{2001}$を13で割った余りを求めよ.
この動画を見る
数学オリンピック予選
$1^{2001}+2^{2001}+3^{2001}+\cdots+2000^{2001}+$
$2001^{2001}$を13で割った余りを求めよ.
Japanese Mathematics Olympic Question 2016 数学オリンピック

単元:
#数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#場合の数#数学オリンピック#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
How many possible ways are there to divide this 11×11 grid into 5 rectangles.
where one of them must not share any of its side with the original rectangle(11×11).
Do not consider any rotation or flipping.
この動画を見る
How many possible ways are there to divide this 11×11 grid into 5 rectangles.
where one of them must not share any of its side with the original rectangle(11×11).
Do not consider any rotation or flipping.
慶應義塾 多項定理 高校数学 Mathematics Japanese university entrance exam

単元:
#数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#場合の数と確率#式と証明#式の計算(整式・展開・因数分解)#場合の数#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
$(3x^2+x-2)^5$
$x^6$の係数
この動画を見る
慶応義塾大学過去問題
$(3x^2+x-2)^5$
$x^6$の係数
東京理科大 確率 サイコロ3個 高校数学 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
東京理科大学過去問題
サイコロ3個を投げる。
次のそれぞれの確率。
(1)3または6が少なくとも1つ出る
(2)3または5または6が少なくとも1つ出る
(3)出た目の積が15の倍数
この動画を見る
東京理科大学過去問題
サイコロ3個を投げる。
次のそれぞれの確率。
(1)3または6が少なくとも1つ出る
(2)3または5または6が少なくとも1つ出る
(3)出た目の積が15の倍数
【数学I】センター2018 第3問 確率 !!解説!!

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学I】センター2018 第3問 確率 解説動画です
この動画を見る
【数学I】センター2018 第3問 確率 解説動画です
神戸大 確率 高校数学 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
'92神戸大学過去問題
10個の白玉と20個の赤玉が入った袋から1個ずつ取り出す(戻さない)
n回目にちょうど4個目の白玉が取り出される確率$P_n$
C,P,!等を用いてよい
この動画を見る
'92神戸大学過去問題
10個の白玉と20個の赤玉が入った袋から1個ずつ取り出す(戻さない)
n回目にちょうど4個目の白玉が取り出される確率$P_n$
C,P,!等を用いてよい
横浜国立大 場合の数・数列の和 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
横浜国立大学過去問題
1~nの整数から異なる2つの整数をとり出し、その2つの整数の和をS、積をtとする。
(1)とり出し方全てを考えたときのSの総和
(2)とり出し方全てを考えたときのtの総和
この動画を見る
横浜国立大学過去問題
1~nの整数から異なる2つの整数をとり出し、その2つの整数の和をS、積をtとする。
(1)とり出し方全てを考えたときのSの総和
(2)とり出し方全てを考えたときのtの総和
滋賀大・愛知医大 n個のサイコロ 確率 Mathematics Japanese university entrance exam

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#愛知医科大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
n個のサイコロを投げる$(n \geqq 2)$次の確率を求めよ。
滋賀大学過去問題
(1)出る目の最小値が2
(2)出る目の最小値が2、最大値が5
愛知医科大学過去問題
(3)出る目の積が10の倍数
この動画を見る
n個のサイコロを投げる$(n \geqq 2)$次の確率を求めよ。
滋賀大学過去問題
(1)出る目の最小値が2
(2)出る目の最小値が2、最大値が5
愛知医科大学過去問題
(3)出る目の積が10の倍数