数A
【数A】図形の性質:<これを見て思い出そう>三角形の重心の性質 ~何対何?~
単元:
#数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
三角形の重心における、頂点→重心:重心→中点の線分の比を導出する動画になります。
この動画を見る
三角形の重心における、頂点→重心:重心→中点の線分の比を導出する動画になります。
一橋大学2022整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ 2^a3^b+2^c3^d=2022$を満たす$0$以上の整数$(a,b,c,d)$を求めよ.
2022一橋大過去問
この動画を見る
$ 2^a3^b+2^c3^d=2022$を満たす$0$以上の整数$(a,b,c,d)$を求めよ.
2022一橋大過去問
福田の入試問題解説〜東京大学2022年理系第2問〜約数と倍数と最大公約数
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 数列\left\{a_n\right\}を次のように定める。\\
a_1=1, a_{n+1}=a_n^2+1 (n=1,2,3,\ldots)\\
(1)正の整数nが3の倍数のとき、a_nは5の倍数となることを示せ。\\
(2)k,nを正の整数とする。a_nがa_kの倍数となるための必要十分条件をk,nを\\
用いて表せ。\\
(3)a_{2022}と(a_{8091})^2の最大公約数を求めよ。
\end{eqnarray}
2022東京大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}}\ 数列\left\{a_n\right\}を次のように定める。\\
a_1=1, a_{n+1}=a_n^2+1 (n=1,2,3,\ldots)\\
(1)正の整数nが3の倍数のとき、a_nは5の倍数となることを示せ。\\
(2)k,nを正の整数とする。a_nがa_kの倍数となるための必要十分条件をk,nを\\
用いて表せ。\\
(3)a_{2022}と(a_{8091})^2の最大公約数を求めよ。
\end{eqnarray}
2022東京大学理系過去問
福田の数学〜東京慈恵会医科大学2022年医学部第4問〜複素数平面と図形
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上の曲線#複素数平面#方べきの定理と2つの円の関係#図形と方程式#点と直線#2次曲線#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 複素数平面上の点zが原点を中心とする半径1の円周上を動くとき、w=z+\frac{2}{z}\\
で表される点wの描く図形をCとする。Cで囲まれた部分の内部(ただし、\\
境界線は含まない)に定点\alphaをとり、\alphaを通る直線lがCと交わる2点を\beta_1,\beta_2とする。\\
このとき、次の問いに答えよ。ただしiは虚数単位とする。\\
(1)w=u+vi(u,vは実数)とするとき、uとvの間に成り立つ関係式を求めよ。\\
(2)点\alphaを固定したままlを動かすとき、積|\beta_1-\alpha|・|\beta_2-\alpha|が最大となる\\
ようなlはどのような直線のときか調べよ。
\end{eqnarray}
2022東京慈恵会医科大学医学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}}\ 複素数平面上の点zが原点を中心とする半径1の円周上を動くとき、w=z+\frac{2}{z}\\
で表される点wの描く図形をCとする。Cで囲まれた部分の内部(ただし、\\
境界線は含まない)に定点\alphaをとり、\alphaを通る直線lがCと交わる2点を\beta_1,\beta_2とする。\\
このとき、次の問いに答えよ。ただしiは虚数単位とする。\\
(1)w=u+vi(u,vは実数)とするとき、uとvの間に成り立つ関係式を求めよ。\\
(2)点\alphaを固定したままlを動かすとき、積|\beta_1-\alpha|・|\beta_2-\alpha|が最大となる\\
ようなlはどのような直線のときか調べよ。
\end{eqnarray}
2022東京慈恵会医科大学医学部過去問
ざ・見掛け倒しだよ
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+……+\dfrac{32}{33}=\dfrac{a}{33!}$
$a$を$17$で割った余りを求めよ.
この動画を見る
$ \dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+……+\dfrac{32}{33}=\dfrac{a}{33!}$
$a$を$17$で割った余りを求めよ.
面積について方程式を立てず解くこともできます。青山高校 関数 2022 入試問題100題解説72問目!!
単元:
#数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
△ABP=△ACPのとき
p=?(-2<p<4)
*図は動画内参照
2022青山高等学校
この動画を見る
△ABP=△ACPのとき
p=?(-2<p<4)
*図は動画内参照
2022青山高等学校
戸山高校 2022 入試問題100題解説71問目!!
単元:
#数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\stackrel{\huge\frown}{CD}$ = $\stackrel{\huge\frown}{DB}$
CF=?
*図は動画内参照
2022戸山高等学校
この動画を見る
$\stackrel{\huge\frown}{CD}$ = $\stackrel{\huge\frown}{DB}$
CF=?
*図は動画内参照
2022戸山高等学校
福田の数学〜東京慈恵会医科大学2022年医学部第3問〜約数と倍数の性質
単元:
#数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ mは3以上の奇数とし、mの全ての正の約数をa_1,a_2,\ldots,a_kと並べる。\\
ただし、a_1 \lt a_2 \lt \ldots \lt a_kとする。\\
以下の2つの条件(\textrm{i}),(\textrm{ii})を満たすmについて考える。\\
(\textrm{i})mは素数ではない。\\
(\textrm{ii})i \leqq j,1 \lt i \lt k ,1 \lt j \lt kを満たす全ての整数i,jについてa_j-a_i \leqq 3が\\
成り立つ。\\
このとき、次の問いに答えよ。\\
(1)kは3または4であることを示し、mをa_2を用いて表せ。\\
(2)k=3となるとき、全ての正の整数nについて(a_2n+1)^{a_2}-1は\\
mの倍数であることを示せ。
\end{eqnarray}
2022東京慈恵会医科大学医学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}}\ mは3以上の奇数とし、mの全ての正の約数をa_1,a_2,\ldots,a_kと並べる。\\
ただし、a_1 \lt a_2 \lt \ldots \lt a_kとする。\\
以下の2つの条件(\textrm{i}),(\textrm{ii})を満たすmについて考える。\\
(\textrm{i})mは素数ではない。\\
(\textrm{ii})i \leqq j,1 \lt i \lt k ,1 \lt j \lt kを満たす全ての整数i,jについてa_j-a_i \leqq 3が\\
成り立つ。\\
このとき、次の問いに答えよ。\\
(1)kは3または4であることを示し、mをa_2を用いて表せ。\\
(2)k=3となるとき、全ての正の整数nについて(a_2n+1)^{a_2}-1は\\
mの倍数であることを示せ。
\end{eqnarray}
2022東京慈恵会医科大学医学部過去問
不定方程式
単元:
#数A#複素数と方程式#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x,y$を実数とする.
$ x^3-y^3+(x-y)^3-36xy=3456$のとき,$ x-y$の値を求めよ.
この動画を見る
$x,y$を実数とする.
$ x^3-y^3+(x-y)^3-36xy=3456$のとき,$ x-y$の値を求めよ.
福田の数学〜東京慈恵会医科大学2022年医学部第1問〜確率の基本性質
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 袋Aには白玉2個、赤玉1個、袋Bには白玉1個、赤玉2個が入っている。\\
この状態から始めて、次の操作を繰り返し行う。\\
操作\\
① 袋A、袋Bから玉を1個ずつ取り出す。\\
② (\textrm{i})取り出した2個の玉の色が同じである場合は、取り出した玉を2個とも\\
袋Aに入れる。\\
(\textrm{ii})取り出した2個の玉の色が異なる場合は、袋Aから取り出した玉は袋B\\
に入れ、袋Bから取り出した玉は袋Aに入れる。\\
このとき、\\
・操作を2回繰り返した後に袋Aに入っている赤玉の個数が1個である確率は\boxed{\ \ (ア)\ \ }\\
・操作を3回繰り返した後に袋Aに入っている赤玉の個数が0個である確率は\boxed{\ \ (イ)\ \ }\\
である。
\end{eqnarray}
2022東京慈恵会医科大学医学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}}\ 袋Aには白玉2個、赤玉1個、袋Bには白玉1個、赤玉2個が入っている。\\
この状態から始めて、次の操作を繰り返し行う。\\
操作\\
① 袋A、袋Bから玉を1個ずつ取り出す。\\
② (\textrm{i})取り出した2個の玉の色が同じである場合は、取り出した玉を2個とも\\
袋Aに入れる。\\
(\textrm{ii})取り出した2個の玉の色が異なる場合は、袋Aから取り出した玉は袋B\\
に入れ、袋Bから取り出した玉は袋Aに入れる。\\
このとき、\\
・操作を2回繰り返した後に袋Aに入っている赤玉の個数が1個である確率は\boxed{\ \ (ア)\ \ }\\
・操作を3回繰り返した後に袋Aに入っている赤玉の個数が0個である確率は\boxed{\ \ (イ)\ \ }\\
である。
\end{eqnarray}
2022東京慈恵会医科大学医学部過去問
2022都立入試 整数問題証明(11の倍数)
単元:
#数学(中学生)#数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数列#数列とその和(等差・等比・階差・Σ)#高校入試過去問(数学)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
2022都立入試 整数問題証明に関して解説していきます.
この動画を見る
2022都立入試 整数問題証明に関して解説していきます.
斜線部の面積 中京大附属中京 2022入試問題解説100問解説59問目!
単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
斜線部の面積を求めよ。
*図は動画内参照
2022中京大学附属中京高等学校
この動画を見る
斜線部の面積を求めよ。
*図は動画内参照
2022中京大学附属中京高等学校
【題意をつかもう!数学の意味を知ろう!】整数:沖縄県公立高等学校~全国入試問題解法
単元:
#数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
「ある2桁の自然数$X$と,その数の十の位の数と一の位の数を入れ替えてできる数$Y$との和が$132$になる.」
もとの自然数$X$として考えられる数をすべて求めなさい.
※もとの自然数$X$は,十の位の数が一の位の数より大きいものとする.
沖縄県高校過去問
この動画を見る
「ある2桁の自然数$X$と,その数の十の位の数と一の位の数を入れ替えてできる数$Y$との和が$132$になる.」
もとの自然数$X$として考えられる数をすべて求めなさい.
※もとの自然数$X$は,十の位の数が一の位の数より大きいものとする.
沖縄県高校過去問
整数問題 須磨学園(改) 2022年入試問題100問解説の53問目
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$x^2+6xy+10y^2+6y=9$を満たす整数の組(x,y)をすべて求めよ。
2022須磨学園高等学校
この動画を見る
$x^2+6xy+10y^2+6y=9$を満たす整数の組(x,y)をすべて求めよ。
2022須磨学園高等学校
2022年の整数問題!この問題好きです❤️ 早稲田大学高等学院2022年入試問題解説49問目
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$2022=x \sqrt y (x^y+y^y)$
を満たす自然数x,yは?
2022早稲田大学高等学院
この動画を見る
$2022=x \sqrt y (x^y+y^y)$
を満たす自然数x,yは?
2022早稲田大学高等学院
平行線と角の和 芝浦工大附属 2022年入試問題解説46問目
単元:
#数学(中学生)#数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\angle x+ \angle y$=?
*図は動画内参照
2022芝浦工業大学附属高等学校
この動画を見る
$\angle x+ \angle y$=?
*図は動画内参照
2022芝浦工業大学附属高等学校
【数学A/整数】 n進法→10進法(小数)
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の数を10進法の小数で表せ。
(1)$0.101_{(2)}$
(2)$0.24_{(5)}$
この動画を見る
次の数を10進法の小数で表せ。
(1)$0.101_{(2)}$
(2)$0.24_{(5)}$
直角三角形たくさん! 早稲田本庄 2022 入試問題解説39問目
単元:
#数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
EF=?
*図は動画内参照
2022早稲田大学本庄高等学院
この動画を見る
EF=?
*図は動画内参照
2022早稲田大学本庄高等学院
【数学A/整数】10進法をn進法で表す
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の10進法を[ ]内の表し方で表せ。
(1)57 [2進法]
(2)83 [5進法]
この動画を見る
次の10進法を[ ]内の表し方で表せ。
(1)57 [2進法]
(2)83 [5進法]
2022年2月9日 早稲田本庄 2022 入試問題解説37問目
単元:
#数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
a=?
b=?
(a>0,b>0)
*図は動画内参照
2022早稲田大学本庄高等学院
この動画を見る
a=?
b=?
(a>0,b>0)
*図は動画内参照
2022早稲田大学本庄高等学院
整数問題 慶應志木高校2022入試問題解説36問目
単元:
#数学(中学生)#数Ⅰ#数A#2次関数#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
xについての2次方程式
$x^2-(4t-1)x+4t^2-2t = 0$の2つの解をα、βとする
5,α,βを辺にもつ三角形が直角三角形のとき
tの値は?
2022慶應義塾志木高等学校
この動画を見る
xについての2次方程式
$x^2-(4t-1)x+4t^2-2t = 0$の2つの解をα、βとする
5,α,βを辺にもつ三角形が直角三角形のとき
tの値は?
2022慶應義塾志木高等学校
◆わかりやすく◆数学A・整数 n進法を10進法で表す
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の数を10進法で表せ。
(1)$1101_{(2)}$
(2)$231_{(4)}$
この動画を見る
次の数を10進法で表せ。
(1)$1101_{(2)}$
(2)$231_{(4)}$
東京大学 整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
n,a,b,c,dは0または正の整数
$
\begin{eqnarray}
\left\{
\begin{array}{l}
a^2+b^2+c^2+d^2 = n^2 -6 \\
a+b+c+d = n \\
a \geqq b \geqq c \geqq d
\end{array}
\right.
\end{eqnarray}
$
を満たす(n,a,b,c,d)数の組を全て求めよ
1980年代東京大学
この動画を見る
n,a,b,c,dは0または正の整数
$
\begin{eqnarray}
\left\{
\begin{array}{l}
a^2+b^2+c^2+d^2 = n^2 -6 \\
a+b+c+d = n \\
a \geqq b \geqq c \geqq d
\end{array}
\right.
\end{eqnarray}
$
を満たす(n,a,b,c,d)数の組を全て求めよ
1980年代東京大学
整数問題 慶應志木高校2022入試問題解説35問目
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
x,y,z:素数
$z=80x^2+2xy - y^2$を満たす(x,y,z)の組のうち、
zが2番目に小さくなるものを求めよ
(x,y,z)=▢
2022慶應義塾志木高等学校
この動画を見る
x,y,z:素数
$z=80x^2+2xy - y^2$を満たす(x,y,z)の組のうち、
zが2番目に小さくなるものを求めよ
(x,y,z)=▢
2022慶應義塾志木高等学校
2022久留米大(医)約数の個数
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#久留米大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ 2\lt n \gt ^2-9\lt n \gt-7・\lt 81 \gt=0$
を満たす3桁の自然数nを求めよ
2022年久留米大学医学部過去問
この動画を見る
$ 2\lt n \gt ^2-9\lt n \gt-7・\lt 81 \gt=0$
を満たす3桁の自然数nを求めよ
2022年久留米大学医学部過去問
2022年の整数問題 愛工大名電高校2022入試問題解説34問目
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{2022}{2n+1}$が素数になる自然数nのうち最大のものを求めよ。
2022愛知工業大学名電高等学校
この動画を見る
$\frac{2022}{2n+1}$が素数になる自然数nのうち最大のものを求めよ。
2022愛知工業大学名電高等学校
順天堂(医)確率 基本
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#順天堂大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
ある1つの箱から とり出して戻すを3回行ったら
●●○となった
箱がAである確率を求めよ
2022年順天堂医学大学 過去問
この動画を見る
ある1つの箱から とり出して戻すを3回行ったら
●●○となった
箱がAである確率を求めよ
2022年順天堂医学大学 過去問
【数学A/整数】方程式の整数解を求める
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
方程式$xy-3x+y+2=0$を満たす整数の組$(x,y)$を全て求めよ。
この動画を見る
方程式$xy-3x+y+2=0$を満たす整数の組$(x,y)$を全て求めよ。
サクッと解こう!高校入試レベル
【わかりやすく解説】等式を満たす自然数を求める(数学A・整数)
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
等式$3x+4y=45$を満たす自然数$x,y$の組を全て求めよ。
この動画を見る
等式$3x+4y=45$を満たす自然数$x,y$の組を全て求めよ。