接線と増減表・最大値・最小値

東京海洋大学 三角関数 最大最小 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#三角関数とグラフ#接線と増減表・最大値・最小値#東京海洋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
東京海洋大学過去問題
のときのyの最大値、最小値およびその時のxの値
この動画を見る
東京海洋大学過去問題
弘前大 微分 最小値 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)#弘前大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
弘前大学過去問題
における最小値
この動画を見る
弘前大学過去問題
信州大学(医) 放物線への法線 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2011信州大学過去問題
放物線 上にない点P(a,b)をとる。C上の点Qに対し直線PQが点QでのCの接線と垂直に交わるとき、PQをPからCへの垂線(法線)という。
点P(a,b)からCへ3本の異なる垂線が引けるためのa,bの条件
この動画を見る
2011信州大学過去問題
放物線
点P(a,b)からCへ3本の異なる垂線が引けるためのa,bの条件
東北大学 三次方程式 解と係数の関係 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2013東北大学過去問題
f(x)=0の3解をα,β,γとする。
g(x)は の係数が1である3次式で、g(x)=0の3解は、αβ,βγ,γαである。
(1)g(x)をkを用いて表せ。
(2)f(x)=0,とg(x)=0が共通解をもつkの値。
この動画を見る
2013東北大学過去問題
f(x)=0の3解をα,β,γとする。
g(x)は
(1)g(x)をkを用いて表せ。
(2)f(x)=0,とg(x)=0が共通解をもつkの値。
一橋大学(’94)微分 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
一橋大学'94過去問題
と
との両方に接する直線が4本あるようなcの範囲
この動画を見る
一橋大学'94過去問題
との両方に接する直線が4本あるようなcの範囲
福田の一夜漬け数学〜多変数関数1文字固定(3)〜受験編

単元:
#数Ⅱ#図形と方程式#指数関数と対数関数#微分法と積分法#軌跡と領域#指数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
三辺の長さがa,b,cである直方体を長さがbの一辺を回転軸として
回転させる。直方体が通過する点全体が作る体積をVとする。
(1) を で表せ。
(2) のとき、 の取り得る値の範囲を求めよ。
この動画を見る
三辺の長さがa,b,cである直方体を長さがbの一辺を回転軸として
回転させる。直方体が通過する点全体が作る体積をVとする。
(1)
(2)