数Ⅱ - 質問解決D.B.(データベース) - Page 2

数Ⅱ

福田のおもしろ数学547〜複素数の偏角

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

複素数

$(1-\cos 20°-i \sin 20°)^{10}$

の偏角を$0°~360°$の範囲で求めよ。
    
この動画を見る 

福田の数学〜九州大学2025文系第2問〜円周上の2点との距離の2乗の和の最大値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#三角関数#三角関数とグラフ#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

半径$1$の円周$C$上の$2$点$A,B$は

$AB=\sqrt3$をみたすとする。

点$P$が円周$C$上を動くとき、

$AP^2+BP^2$の最大値を求めよ。

$2025$年九州大学文系過去問題
この動画を見る 

福田のおもしろ数学546〜1分チャレンジ!数値計算の計算

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

次の計算をして下さい。

$\dfrac{1}{1+1^2+1^4}+\dfrac{2}{1+2^2+2^4}+\dfrac{3}{1+3^2+3^4}+\cdots + \dfrac{50}{1+50^2+50^4}$
    
この動画を見る 

福田の数学〜九州大学2025文系第1問〜共通接線

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

$2$つの曲線

$y=x^3+x^2-x-1,y=x^2$

の両方に接するすべての直線の

方程式を求めよ。

$2025$年九州大学文系過去問題
この動画を見る 

福田の数学〜九州大学2025理系第5問〜3次方程式の解と確率

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#複素数と方程式#場合の数#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$1$個のさいころを$3$回続けて投げ、

出る目を順に$a,b,c$とする。

整式$f(x)=(x^2-ax+b)(x-c)$

について、以下の問いに答えよ。

(1)$f(x)=0$をみたす実数$x$の個数が

$1$個である確率を求めよ。

(2)$f(x)=0$をみたす自然数$x$の個数が

$3$個である確率を求めよ。

$2025$年九州大学理系過去問題
この動画を見る 

福田のおもしろ数学544〜1分チャレンジ!微分の計算

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$y=\sqrt[3]{x+\sqrt{x^2+1}}+\sqrt[3]{x-\sqrt{x^2+1}}$

に対して、

導関数$y'$を$y$で表して下さい。
    
この動画を見る 

福田のおもしろ数学543〜2つの球面に引いた接線の長さの等しい点の軌跡

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$2$つの球面に引いた接線の長さの

等しい点の軌跡はどんな図形だろう?
    
この動画を見る 

福田のおもしろ数学542〜定積分の値の評価

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\dfrac{1}{3}\lt \displaystyle \int_{0}^{1}x^{(\sin x+\cos x)^2}dx \lt \dfrac{1}{2}$

を証明して下さい。
    
この動画を見る 

福田の数学〜九州大学2025理系第2問〜定積分の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

以下の問いに答えよ。

(1)$y=\tan x$とするとき、

$\dfrac{dy}{dx}$を$y$の整式で表せ。

(2)次の定積分を求めよ。

$\displaystyle \int_{0}^{\frac{\pi}{4}}\dfrac{\tan^4x-\tan^2 x-2}{\tan^2x-4}dx$

$2025$年九州大学理系過去問題
この動画を見る 

福田のおもしろ数学541〜条件付き不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$x,y,z$は

$x+y+z \geqq xyz$

を満たす非負実数とするとき

$x^2+y^2+z^2 \geqq xyz$

を証明して下さい。
    
この動画を見る 

福田のおもしろ数学540〜二項係数の2乗の和

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

${{}_n \mathrm{ C }_0}^2+{{}_n \mathrm{ C }_1}^2+{{}_n \mathrm{ C }_2}^2+\cdots + {{}_n \mathrm{ C }_n}^2=\dfrac{(2n)!}{(n!)^2}$

を証明してください。
    
この動画を見る 

福田の数学〜神戸大学2025文系第3問〜単位円周上の2点と確率

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#場合の数#三角関数#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$1$個のさいころを$2$回続けて投げるとき、

出た目の数を順に$a,b$とおく。

座標平面上の$2$点$A,B$を

$A\left(\cos \dfrac{a}{6}\pi,\sin\dfrac{a}{6}\pi\right),\quad B\left(\cos \dfrac{b+6}{6}\pi,\sin\dfrac{b+6}{6}\pi\right)$

とし、原点を$O$とする。

以下の問いに答えよ。

(1)$3$点$O,A,B$が一直線上にある確率を求めよ。

(2)$3$点$O,A,B$が一直線上になく、かつ

三角形$OAB$の面積が$\dfrac{1}{4}$以下である

確率を求めよ。

(3)$2$点$A,B$間の距離が$1$より

大きい確率を求めよ。

$2025$年神戸大学文系過去問題
この動画を見る 

福田の数学〜神戸大学2025文系第1問〜3次方程式が異なる3個の実数解をもつ条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

$a$を実数とする。

$f(x)=2x^3+ax^2-1$とおくとき、以下の問いに答えよ。

(1)方程式$f(x)=0$は$x=-1$に解にもつとする。

このとき、$a$の値を求め、

方程式$f(x)=0$の解をすべて求めよ。

(2)$a$の値を(1)で求めたものとする。

関数$f(x)$の極限を求めよ。

(3)方程式$f(x)=0$が異なる$3$つの実数解を

もつような$a$の値の範囲を求めよ。

$2025$年神戸大学文系過去問題
この動画を見る 

福田のおもしろ数学537〜2変数関数の極限

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$xy-x^3\tan \dfrac{1}{x}+y^2=0$のとき、

$\displaystyle \lim_{x\to\infty}\dfrac{y}{x}$を求めよ。
    
この動画を見る 

福田の数学〜神戸大学2025理系第5問〜連続と微分可能と曲線の長さ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

連続関数$f(x)$は$x \geqq 0$で$f(x) \geqq 0$を満たし、

$x \gt 0$で微分可能であり、その導関数$f'(x)$は

連続であるとする。

$t \geqq 1$を満たす$t$に対して、

$y=f(x) \ (1\leqq x \leqq t)$で表される曲線の長さを

$h(t)$とし、$t=1$のときは$h(1)=0$とする。

以下の問いに答えよ。

(1)$t\gt 1$とする。

開区間$(1,t)$で常に$f(x)-xf'(x)=0$が成り立つならば、

閉区間$[1,t]$で$\dfrac{f(x)}{x}$は定数であることを示せ。

(2)$t\geqq 1$を満たす任意の$t$に対して、

$g(t)=h(t)+2$が成り立つとする。

このとき、$f(1)$の値を求めよ。

また、$t\geqq 1$のとき$f(t)$を$t$を用いて表せ。

$2025$年神戸大学理系過去問題
この動画を見る 

福田の数学〜神戸大学2025理系第3問〜媒介変数表示で表された曲線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#微分法と積分法#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

媒介変数$\theta$を用いて

$x=\sin\theta,y=\cos\theta + \vert \sin\theta \vert \quad (0\leqq \theta \leqq 2\pi)$

で表される曲線を$C$とする。以下の問いに答えよ。

(1)曲線$C$の概形をかけ。

(2)曲線$C$で囲まれた部分の面積を求めよ。

$2025$年神戸大学理系過去問題
この動画を見る 

福田のおもしろ数学534〜不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$a,b$が正の実数のとき

$\sqrt[3]{\dfrac{a}{b}}+\sqrt[3]{{b}{a}}\leqq \sqrt[3]{2(a+b)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}$

を証明して下さい。
    
この動画を見る 

福田のおもしろ数学533〜凸四角形の性質に関する証明

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#式と証明#周角と円に内接する四角形・円と接線・接弦定理#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

凸四角形$ABCD$において

$\angle CBD = 2\angle ADB,\angle ABD = 2\angle CDB,AB=CB$

のとき、

$AD=CD$を証明して下さい。

図は動画内参照
この動画を見る 

福田の数学〜神戸大学2025理系第1問〜曲線と直線の共有点の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

$k$を実数とする。

$f(x)$と$g(x)$を

$f(x) = \vert x^3-x \vert,\quad g(x)=k(x+1)$

とおき、曲線$y=f(x)$を$C$、

直線$y=g(x)$を$\ell$とする。以下の問いに答えよ。

(1)曲線$C$の概形をかけ。

ただし、関数$f(x)$の極大値を調べる必要はない。

(2)曲線$C$と直線$\ell$がちょうど$4$つの

共有点をもつような$k$の値を求めよ。

$2025$年神戸大学理系過去問題
この動画を見る 

福田のおもしろ数学532〜「∞ー∞」型の極限

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\displaystyle \lim_{x\to 1} \left(\dfrac{2025}{1-x^{2025}}-\dfrac{1521}{1-x^{1521}}\right)$

を求めて下さい。
    
この動画を見る 

福田の数学〜大阪大学2025文系第3問〜放物線と接線が作る面積の最大値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

座標平面において、$y=x^2-1$で表される放物線を

$C$とする。

$C$上の点$P$における$C$の接線を$\ell$とする。

ただし、点$P$は$y$軸上にはないものとする。

$O$を原点とし、放物線$C$と線分$OP$をよび

$y$軸で囲まれた図形の面積を$S$、

放物線$C$と接線$\ell$および$y$軸で囲まれた図形の

面積を$T$とする。

$S-T$の最大値を求めよ。

$2025$年大阪大学文系過去問題
この動画を見る 

福田のおもしろ数学530〜三角関数の最大値

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$x_i \in R \ (i=1,2,\cdots,n)$

$n$は$2$以上の自然数

$\sin x_1 \cos x_2 +\sin x_2 \cos x_3+ \cdots + \sin x_n \cos x_1$

の最大値を求めよ。
     
この動画を見る 

福田の数学〜大阪大学2025理系第4問〜不等式の証明と関数の極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

次の問いに答えよ。

(1)$t\gt 0$のとき

$-\dfrac{1}{t}\lt \displaystyle \int_{t}^{2t} \dfrac{\sin x}{x^2}dx \lt \dfrac{1}{t}$

が成り立つことを示せ。

(2)$\displaystyle \lim_{t\to\infty}\displaystyle \dfrac{\cos x}{x}dx=0$を示せ。

(3)$f(x)=\sin\left(\dfrac{3x}{2}\right)\sin\left(\dfrac{x}{2}\right)$おく。

$\displaystyle \lim_{t\to\infty}\displaystyle \int_{1}^{t} \dfrac{f(x)}{x}dx=\dfrac{1}{2} \displaystyle \int_{1}^{2} \dfrac{\cos x}{x} dx$

を示せ。

$2025$年大阪大学理系過去問題
この動画を見る 

福田の数学〜大阪大学2025理系第3問〜空間図形と最大最小の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#微分法と積分法#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

座標空間に$3$点$O(0,0,0),A(0,1,1),B(x,y,0)$がある。

$\angle OAP=30°$かつ$y\geqq 0$を満たすように

点$P$が動くとき、

$(x+1)(y+1)$の最大値と最小値を求めよ。

$2025$年大阪大学理系過去問題
この動画を見る 

福田の数学〜大阪大学2025理系第2問〜3次関数の極値と変曲点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

$p$と$m$を実数とし、

関数$f(x)=x^3+3px^2+3mx$は

$x=\alpha$で極大値をとり、

$x=\beta$で極小値をとるとする。

(1)$f(\alpha)-f(\beta)$を$p$と$m$を用いて表せ。

(2)$p$と$m$が$f(\alpha)-f(\beta)=4$を

満たしながら動くとき、

曲線$y=f(x)$の変曲点の軌跡を求めよ。

$2025$年大阪大学理系過去問題
この動画を見る 

福田のおもしろ数学526〜数値評価

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\dfrac{1}{2027} \lt \dfrac{1}{2}・\dfrac{3}{4}・\dfrac{5}{6}・\cdots ・\dfrac{2025}{2026}$

を証明して下さい。
     
この動画を見る 

福田のおもしろ数学525〜数値評価

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\dfrac{1}{2}・\dfrac{3}{4}・\dfrac{5}{6}・\cdots \dfrac{2025}{2026}\lt \dfrac{1}{45}$

を証明して下さい。
    
この動画を見る 

equation : Shirotan's cute kawaii math show #数学 #小学生テスト #高校入試 #歌ってみた #高校受験 #占い

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
a¹⁰b⁸+a⁶b⁸-3a⁵b⁵=?
この動画を見る 

福田のおもしろ数学524〜無限級数の和

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\displaystyle \sum_{k=1}^{\infty} \dfrac{k^2}{3^k}$を求めて下さい。
     
この動画を見る 

福田の数学〜立教大学2025理学部第2問〜三角関数の最大最小の定番

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

実数$x$に対し、関数$f(x)$を

$f(x)=\sin^3x+\cos^3x+4sin x \cos x$

により定める。

また、$t=\sin x+\cos x$とおく。次の問いに答えよ。

(1)$\sin x \cos x$を$t$を用いて表せ。

(2)$f(x)$を$t$を用いて表せ。

(3)$x$がすべてに実数を動くとき、

$t$のとりうる値の範囲を求めよ。

(4)$x$がすべてに実数を動くとき、

$f(x)$の最大値と最小値をそれぞれ求めよ。

$2025$年立教大学理学部過去問題
この動画を見る 
PAGE TOP