積分とその応用
積分とその応用
18和歌山県教員採用試験(数学:5番 定積分)

単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\boxed{5}$
$\displaystyle \int_{0}^{1}\dfrac{2x-1}{x^2+x+1}-dx$を解け.
この動画を見る
$\boxed{5}$
$\displaystyle \int_{0}^{1}\dfrac{2x-1}{x^2+x+1}-dx$を解け.
#8数検1級1次過去問 重積分積分順序の変更

単元:
#数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\boxed{7}$
以下を解け.
$\displaystyle \int_{0}^{3} dy \displaystyle \int_{0}^{\sqrt{\frac{y}{3}}}\ \log(x^3-3x+3)dx$
この動画を見る
$\boxed{7}$
以下を解け.
$\displaystyle \int_{0}^{3} dy \displaystyle \int_{0}^{\sqrt{\frac{y}{3}}}\ \log(x^3-3x+3)dx$
11京都府教員採用試験(数学:4番 回転体 バームクーヘンの定理)

単元:
#積分とその応用#面積・体積・長さ・速度#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{4}$
曲線$y=x+e^x,x$軸,$x=1,x=2$で囲まれた
部分を$S$とする.
(1)$x$軸中心に$S$を回転した体積$V_1$を求めよ.
(2)$y$軸中心に$S$を回転した体積$V_2$を求めよ.
この動画を見る
$\boxed{4}$
曲線$y=x+e^x,x$軸,$x=1,x=2$で囲まれた
部分を$S$とする.
(1)$x$軸中心に$S$を回転した体積$V_1$を求めよ.
(2)$y$軸中心に$S$を回転した体積$V_2$を求めよ.
複素関数論⑯ コーシーの積分定理の応用 *8(1)(2)

単元:
#数Ⅱ#複素数と方程式#複素数#積分とその応用#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$ \displaystyle \int_{c}^{} \dfrac{1}{z-2i}\ dz$
(1)$c:$原点を中心とする単位円を求めよ.
(2)$c:-1,1,3i$でつくられる三角形の周を求めよ.
この動画を見る
$ \displaystyle \int_{c}^{} \dfrac{1}{z-2i}\ dz$
(1)$c:$原点を中心とする単位円を求めよ.
(2)$c:-1,1,3i$でつくられる三角形の周を求めよ.
07岡山県教員採用試験(数学:6番 積分)

単元:
#積分とその応用#不定積分#定積分#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{6}$
$m,n$を自然数とし,$m\neq n$とする.
以下を解け.
(1)$\displaystyle \int_{0}^{\pi} \sin^2 nx \ dx$
(2)$\displaystyle \int_{0}^{\pi} \sin\ mx・\sin \ nx \ dx$
(3)$\displaystyle \int_{0}^{\pi} \left(\displaystyle \sum_{k=1}^{3m} \sqrt k \cos\dfrac{k\pi}{3} \sin\ kx\right)^2 dx$
この動画を見る
$\boxed{6}$
$m,n$を自然数とし,$m\neq n$とする.
以下を解け.
(1)$\displaystyle \int_{0}^{\pi} \sin^2 nx \ dx$
(2)$\displaystyle \int_{0}^{\pi} \sin\ mx・\sin \ nx \ dx$
(3)$\displaystyle \int_{0}^{\pi} \left(\displaystyle \sum_{k=1}^{3m} \sqrt k \cos\dfrac{k\pi}{3} \sin\ kx\right)^2 dx$
福田の数学〜慶應義塾大学2021年理工学部第4問〜はさみうちの原理と区分求積

単元:
#大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{4}}\hspace{240pt}$
(1)$a$は$0 \lt a \leqq \displaystyle \frac{1}{2}$を満たす定数とする。$x \geqq 0$の範囲で不等式
$a\left(x-\displaystyle \frac{x^2}{4}\right) \leqq \log(1+ax)$ が成り立つことを示しなさい。
(2)$b$を実数の定数とする。$x \geqq 0$の範囲で不等式
$\log\left(1+\displaystyle \frac{1}{2}x\right) \leqq bx$
が成り立つような$b$の最小値は$\boxed{\ \ タ\ \ }$である。
(3)$n$と$k$を自然数とし、$I(n,k)=\lim_{t \to +0}$$\int_0^{\displaystyle \frac{k}{n}}\displaystyle \frac{\log\left(1+\displaystyle\frac{1}{2}tx\right)}{t(1+x)}dx$
とおく。$I(n,k)$を求めると、$I(n,k)=\boxed{\ \ チ\ \ }$である。また
$\lim_{n \to \infty}\displaystyle \frac{1}{n}\sum_{k=1}^nI(n,k)=\boxed{\ \ ツ\ \ }$ である。
この動画を見る
${\Large\boxed{4}}\hspace{240pt}$
(1)$a$は$0 \lt a \leqq \displaystyle \frac{1}{2}$を満たす定数とする。$x \geqq 0$の範囲で不等式
$a\left(x-\displaystyle \frac{x^2}{4}\right) \leqq \log(1+ax)$ が成り立つことを示しなさい。
(2)$b$を実数の定数とする。$x \geqq 0$の範囲で不等式
$\log\left(1+\displaystyle \frac{1}{2}x\right) \leqq bx$
が成り立つような$b$の最小値は$\boxed{\ \ タ\ \ }$である。
(3)$n$と$k$を自然数とし、$I(n,k)=\lim_{t \to +0}$$\int_0^{\displaystyle \frac{k}{n}}\displaystyle \frac{\log\left(1+\displaystyle\frac{1}{2}tx\right)}{t(1+x)}dx$
とおく。$I(n,k)$を求めると、$I(n,k)=\boxed{\ \ チ\ \ }$である。また
$\lim_{n \to \infty}\displaystyle \frac{1}{n}\sum_{k=1}^nI(n,k)=\boxed{\ \ ツ\ \ }$ である。
複素関数論⑨ 高専数学 複素積分*1(1)-(3)

17岡山県教員採用試験(数学:5番 積分)

単元:
#積分とその応用#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{5}$
$n$を自然数とする.
$f(x)=e^{-x}\ \sin x,(n-1)\pi \leqq x\leqq n\pi$と
$x$軸で囲まれた部分の面積を$S_n$とする.
$\displaystyle \sum_{n=1}^{\infty} S_n$を求めよ.
この動画を見る
$\boxed{5}$
$n$を自然数とする.
$f(x)=e^{-x}\ \sin x,(n-1)\pi \leqq x\leqq n\pi$と
$x$軸で囲まれた部分の面積を$S_n$とする.
$\displaystyle \sum_{n=1}^{\infty} S_n$を求めよ.
重積分⑥-5 #157【曲面・平面で囲まれた体積】(高専数学 微積II,数検1級1次解析対応)

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#不定積分・定積分#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
直円柱$x^2+y^2=4x$
$xy$平面,曲面$Z=xy^2$で囲まれた体積$V$を求めよ.
この動画を見る
直円柱$x^2+y^2=4x$
$xy$平面,曲面$Z=xy^2$で囲まれた体積$V$を求めよ.
重積分⑧-6 #155 【一般の変数変換】(高専数学 微積II,数検1級1次解析対応)

単元:
#数Ⅱ#微分法と積分法#積分とその応用#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
これを解け.
$D:\geqq 0,y\geqq 0,\dfrac{x^2}{4}+\dfrac{y^2}{4}\leqq 1$
$\iint_D \ xy \ dx \ dy$
この動画を見る
これを解け.
$D:\geqq 0,y\geqq 0,\dfrac{x^2}{4}+\dfrac{y^2}{4}\leqq 1$
$\iint_D \ xy \ dx \ dy$
重積分⑧-5 #154 【一般の変数変換(難)】(高専数学 微積II,数検1級1次解析対応)

単元:
#数Ⅱ#微分法と積分法#積分とその応用#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\iint_D \ xy\ dx\ dy$
$D:y=x^2,2y=x^2,x=y^2,2x=y^2$で囲まれた領域を求めよ.
この動画を見る
$\iint_D \ xy\ dx\ dy$
$D:y=x^2,2y=x^2,x=y^2,2x=y^2$で囲まれた領域を求めよ.
13愛知県教員採用試験(数学:10番 積分)

単元:
#積分とその応用#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{10}$これを解け.
$\displaystyle \int_{0}^{\frac{\pi}{2}}\sin\dfrac{5}{2}x\cos\dfrac{1}{2}x\ dx$
この動画を見る
$\boxed{10}$これを解け.
$\displaystyle \int_{0}^{\frac{\pi}{2}}\sin\dfrac{5}{2}x\cos\dfrac{1}{2}x\ dx$
重積分⑩-5 #151【曲面の面積】(高専数学 微積II,数検1級1次解析対応)

単元:
#数学検定・数学甲子園・数学オリンピック等#積分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$D:x^2+y^2\leqq 1$
曲面$Z=xy$の$D$上における面積$S$を求めよ.
この動画を見る
$D:x^2+y^2\leqq 1$
曲面$Z=xy$の$D$上における面積$S$を求めよ.
重積分⑥-4 #146【曲面・平面で囲まれた体積】(高専数学 微積II,数検1級1次解析対応)

単元:
#数学検定・数学甲子園・数学オリンピック等#積分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
直円柱$x^2+y^2\leqq 4$
平面$Z=0$,曲面$Z=4-x^2$で囲まれた体積$V$を求めよ.
この動画を見る
直円柱$x^2+y^2\leqq 4$
平面$Z=0$,曲面$Z=4-x^2$で囲まれた体積$V$を求めよ.
重積分⑨-8【広義積分】(高専数学 微積II,数検1級1次解析対応)

単元:
#数学検定・数学甲子園・数学オリンピック等#積分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
これを解け.
(1)$\displaystyle \int_{0}^{\infty} \\ e^{-9x^2}\ dx$
(2)$\displaystyle \int_{-\infty}^{\infty} \\ e^{-4x^2}\ dx$
(3)$\displaystyle \int_{0}^{\infty} \\ e^{-x^2} dx=\dfrac{\sqrt x}{2}$
この動画を見る
これを解け.
(1)$\displaystyle \int_{0}^{\infty} \\ e^{-9x^2}\ dx$
(2)$\displaystyle \int_{-\infty}^{\infty} \\ e^{-4x^2}\ dx$
(3)$\displaystyle \int_{0}^{\infty} \\ e^{-x^2} dx=\dfrac{\sqrt x}{2}$
重積分⑨-6【広義積分】(高専数学 微積II,数検1級1次解析対応)

単元:
#数学検定・数学甲子園・数学オリンピック等#積分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$D:0\leqq x\leqq 1,0\leqq y\leqq 1$とする.
$\iint_D \ \dfrac{1}{\sqrt{xy}}\ dx \ dy$
これを解け.
この動画を見る
$D:0\leqq x\leqq 1,0\leqq y\leqq 1$とする.
$\iint_D \ \dfrac{1}{\sqrt{xy}}\ dx \ dy$
これを解け.
重積分⑥-3【曲面・平面で囲まれた体積】(高専数学 微積II,数検1級1次解析対応)

単元:
#数学検定・数学甲子園・数学オリンピック等#積分とその応用#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$a\gt 0$とする.
曲面$Z=4a^2-x^2-y^2$と
$xy$平面で囲まれた体積$V$を求めよ.
この動画を見る
$a\gt 0$とする.
曲面$Z=4a^2-x^2-y^2$と
$xy$平面で囲まれた体積$V$を求めよ.
【数Ⅲ】積分法:①逆関数を用いた積分! 曲線y=e^x,x=1,x軸,y軸によって囲まれた部分をy軸の周りに1回転させてできる立体の体積を求めよ

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
曲線$y=e^x,x=1$,x軸,y軸によって囲まれた部分をy軸の周りに1回転させてできる立体の体積を求めよ
この動画を見る
曲線$y=e^x,x=1$,x軸,y軸によって囲まれた部分をy軸の周りに1回転させてできる立体の体積を求めよ
【数Ⅲ】積分法:②バウムクーヘン型積分! 曲線y=e^x,x=1,x軸,y軸によって囲まれた部分をy軸の周りに1回転させてできる立体の体積を求めよ

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
曲線$y=e^x,x=1$,x軸,y軸によって囲まれた部分をy軸の周りに1回転させてできる立体の体積を求めよ
この動画を見る
曲線$y=e^x,x=1$,x軸,y軸によって囲まれた部分をy軸の周りに1回転させてできる立体の体積を求めよ
04愛知県教員採用試験(数学:10番 重積分)

単元:
#積分とその応用#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\iint_D f \ x \ dx\ dy$
$ D:\sqrt{\dfrac{x}{4}}+\sqrt{\dfrac{y}{3}}\leqq 1 $
これを解け.
図は動画内参照
この動画を見る
$\iint_D f \ x \ dx\ dy$
$ D:\sqrt{\dfrac{x}{4}}+\sqrt{\dfrac{y}{3}}\leqq 1 $
これを解け.
図は動画内参照
重積分④-1【積分順序の変更】(高専数学 微積II,数学検定1級解析)
単元:
#数Ⅱ#積分とその応用#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
積分順序を変更せよ.
(1)$\displaystyle \int_{0}^{1} \displaystyle \int_{x^2}^{x} f(x,y)dy \ dx$
(2)$\displaystyle \int_{0}^{1} \displaystyle \int_{x}^{3x} f(x,y)dy \ dx$
この動画を見る
積分順序を変更せよ.
(1)$\displaystyle \int_{0}^{1} \displaystyle \int_{x^2}^{x} f(x,y)dy \ dx$
(2)$\displaystyle \int_{0}^{1} \displaystyle \int_{x}^{3x} f(x,y)dy \ dx$
09愛知県教員採用試験(数学:2番 微積)

単元:
#関数と極限#微分とその応用#積分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
2⃣ $0 \leqq x \leqq \frac{1}{\sqrt 3}$
$f(x)=\int_x^{\sqrt 3 x} \sqrt{1-t^2} dt$
(1)f(x)の最大値
(2)$\displaystyle \lim_{ x \to \infty } \frac{f(x)}{x}$
この動画を見る
2⃣ $0 \leqq x \leqq \frac{1}{\sqrt 3}$
$f(x)=\int_x^{\sqrt 3 x} \sqrt{1-t^2} dt$
(1)f(x)の最大値
(2)$\displaystyle \lim_{ x \to \infty } \frac{f(x)}{x}$
数検準1級2次過去問(7番 微分積分)

単元:
#数学検定・数学甲子園・数学オリンピック等#積分とその応用#面積・体積・長さ・速度#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
7⃣ $y=(1+logx)logx$
とx軸で囲まれた図形の面積を求めよ。
この動画を見る
7⃣ $y=(1+logx)logx$
とx軸で囲まれた図形の面積を求めよ。
数検準1級1次過去問(5番 積分)

単元:
#数学検定・数学甲子園・数学オリンピック等#積分とその応用#定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
5⃣
(1)$\int x(x^2+4)^{\frac{1}{3}} dx$
(2)$\int_2^{2\sqrt{15}} x(x^2+4)^{\frac{1}{3}} dx$
この動画を見る
5⃣
(1)$\int x(x^2+4)^{\frac{1}{3}} dx$
(2)$\int_2^{2\sqrt{15}} x(x^2+4)^{\frac{1}{3}} dx$
【数Ⅲ-177(最終回)】速度と道のり②(平面運動編)

単元:
#微分とその応用#積分とその応用#微分法#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(速度と道のり②・平面運動編)
ポイント
平面上を運動する点$P$の座標$(x,y)$が、時刻$t$の関数$x=f(t)$、$y=g(t)$で表されるとき、 点$P$が時刻$t=a$から$t=b$までの間に通過する道のり$S$は
$S=$ ①
②
平面上を動く点$P$の時刻における座標$(x,y)$が$x=t-\sin t$、$y=1-\cos t$で与えられている。
このとき、$t=0$から$t=\pi$までの間に点$P$の動いた道のりを求めよ。
この動画を見る
数Ⅲ(速度と道のり②・平面運動編)
ポイント
平面上を運動する点$P$の座標$(x,y)$が、時刻$t$の関数$x=f(t)$、$y=g(t)$で表されるとき、 点$P$が時刻$t=a$から$t=b$までの間に通過する道のり$S$は
$S=$ ①
②
平面上を動く点$P$の時刻における座標$(x,y)$が$x=t-\sin t$、$y=1-\cos t$で与えられている。
このとき、$t=0$から$t=\pi$までの間に点$P$の動いた道のりを求めよ。
【数Ⅲ-176】速度と道のり①(直線運動編)

単元:
#微分とその応用#積分とその応用#微分法#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(速度と道のり①・直線運動編)
ポイント
数直線上を運動する点Pの速度$v$が時刻$t$の関数$v=f(t)$で表されるとき、$t=a$から$t=b$までのPの位置の変化$S$、Pの道のり$l$は
位置の変化$S=$ ①
道のり$l=$ ➁
Q
$x$軸上を運動する点の、時刻$t$における位置を$f(t)$、速度を$v(t)$とすると、$v(t)=4t-t^2$と表されるという。
$f(1)=5$のとき、次の問いに答えよ。
③時刻$t$における位置$f(t)$を求めよ。
④$t=2$から$t=5$までに点が動いた道のりを求めよ。
この動画を見る
数Ⅲ(速度と道のり①・直線運動編)
ポイント
数直線上を運動する点Pの速度$v$が時刻$t$の関数$v=f(t)$で表されるとき、$t=a$から$t=b$までのPの位置の変化$S$、Pの道のり$l$は
位置の変化$S=$ ①
道のり$l=$ ➁
Q
$x$軸上を運動する点の、時刻$t$における位置を$f(t)$、速度を$v(t)$とすると、$v(t)=4t-t^2$と表されるという。
$f(1)=5$のとき、次の問いに答えよ。
③時刻$t$における位置$f(t)$を求めよ。
④$t=2$から$t=5$までに点が動いた道のりを求めよ。
練習問題1(数検準1級、教員採用試験 レベル)

単元:
#数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#その他#数学検定#数学検定準1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
(1)$\int \frac{x}{cos^2x} dx$
(2)$\int \frac{x}{sin^2x} dx$
この動画を見る
(1)$\int \frac{x}{cos^2x} dx$
(2)$\int \frac{x}{sin^2x} dx$
12愛知県教員採用試験(数学:3番 ひたすら積分)

単元:
#積分とその応用#面積・体積・長さ・速度#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
3⃣
$C_1:y=ax^3$と$C_2:y=logx$は接する。
$C_1,C_2$とx軸で囲まれた図形のx軸中心の回転体の体積Vを求めよ。
この動画を見る
3⃣
$C_1:y=ax^3$と$C_2:y=logx$は接する。
$C_1,C_2$とx軸で囲まれた図形のx軸中心の回転体の体積Vを求めよ。
09神奈川県教員採用試験(数学:4番 単なる積分)

単元:
#積分とその応用#定積分#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
4⃣$\pi \int_0^{\frac{\pi}{2}} sin(\pi cosx) sin2xdx$
この動画を見る
4⃣$\pi \int_0^{\frac{\pi}{2}} sin(\pi cosx) sin2xdx$
13愛知県教員採用試験(数学:7番 微積)

単元:
#積分とその応用#定積分#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
7⃣
$f(x)=\int_0^x 6t+2dt+\int_0^a f(t) dt$
$f(0)=a(>0)$
aの値を求めよ
この動画を見る
7⃣
$f(x)=\int_0^x 6t+2dt+\int_0^a f(t) dt$
$f(0)=a(>0)$
aの値を求めよ
