数Ⅲ
数Ⅲ
【高校数学】数Ⅲ-106 媒介変数表示された関数の導関数

単元:
#平面上の曲線#微分とその応用#色々な関数の導関数#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$x$と$y$の関係が次の式で与えられるとき、
$\dfrac{dy}{dx}$を$t$で表せ。
①$x=\dfrac{1}{1+t^2},y=\dfrac{t}{1+t^2}$
②$x=a(t-\sin t),y=(1-\cos t)\quad (a\gt 0)$
この動画を見る
$x$と$y$の関係が次の式で与えられるとき、
$\dfrac{dy}{dx}$を$t$で表せ。
①$x=\dfrac{1}{1+t^2},y=\dfrac{t}{1+t^2}$
②$x=a(t-\sin t),y=(1-\cos t)\quad (a\gt 0)$
【高校数学】数Ⅲ-105 高次導関数③

単元:
#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$y=\sin x$のとき,
$y^{(n)}=\sin\left(x+\dfrac{n\pi}{2}\right)(n=1,2,3・・・)$であることを証明せよ。
この動画を見る
①$y=\sin x$のとき,
$y^{(n)}=\sin\left(x+\dfrac{n\pi}{2}\right)(n=1,2,3・・・)$であることを証明せよ。
【高校数学】数Ⅲ-104 高次導関数②

単元:
#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$y=e^{-x}\sin x$のとき,$y''+2y'+2y=0$を示せ。
②$y=e^{2x}\sin x$のとき,$y''+ay'+by=0$となるような
定数$a,b$の値を求めよ。
この動画を見る
①$y=e^{-x}\sin x$のとき,$y''+2y'+2y=0$を示せ。
②$y=e^{2x}\sin x$のとき,$y''+ay'+by=0$となるような
定数$a,b$の値を求めよ。
【高校数学】数Ⅲ-103 高次導関数①

単元:
#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の関数の第3次までの導関数を求めよ。
①$y=x^4$
②$y=\sin 2x$
③$y=xe^x$
④関数$y=\dfrac{1}{x+1}$の第$n$次導関数を求めよ。
この動画を見る
次の関数の第3次までの導関数を求めよ。
①$y=x^4$
②$y=\sin 2x$
③$y=xe^x$
④関数$y=\dfrac{1}{x+1}$の第$n$次導関数を求めよ。
【高校数学】数Ⅲ-102 指数関数の導関数②

単元:
#数Ⅱ#指数関数と対数関数#指数関数#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の関数を微分せよ。
①$y=e^x \log x$
②$y=\dfrac{e^x}{e^x+e^{-x}}$
③$y=e^x \cos x$
④$y=x^{\sin x} (x \gt 0)$
この動画を見る
次の関数を微分せよ。
①$y=e^x \log x$
②$y=\dfrac{e^x}{e^x+e^{-x}}$
③$y=e^x \cos x$
④$y=x^{\sin x} (x \gt 0)$
【高校数学】数Ⅲ-101 指数関数の導関数①

単元:
#数Ⅱ#指数関数と対数関数#指数関数#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$(e^x)'=①\quad,(a^x)'=②\quad (a \gt 0)$
次の関数を微分せよ。
③$y=5^x$
④$y=3^{-x}$
⑤$y=e^{-2x}$
⑥$y=e^{\sqrt x}$
⑦$y=x・3^x$
⑧$y=x^2 e^x$
この動画を見る
$(e^x)'=①\quad,(a^x)'=②\quad (a \gt 0)$
次の関数を微分せよ。
③$y=5^x$
④$y=3^{-x}$
⑤$y=e^{-2x}$
⑥$y=e^{\sqrt x}$
⑦$y=x・3^x$
⑧$y=x^2 e^x$
【高校数学】数Ⅲ-100 対数微分法

単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の関数を対数微分法を用いて微分せよ。
①$y=\dfrac{x^2(x-1)}{x-2}$
②$y=\sqrt[3]{x^2(x+1)}$
この動画を見る
次の関数を対数微分法を用いて微分せよ。
①$y=\dfrac{x^2(x-1)}{x-2}$
②$y=\sqrt[3]{x^2(x+1)}$
【高校数学】数Ⅲ-99 対数関数の導関数②

単元:
#数Ⅱ#指数関数と対数関数#対数関数#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の関数を微分せよ。
①$y=(\log x)^2$
②$y=\dfrac{\log x}{x}$
③$y=\log(x+\sqrt{x^2+3})$
④$y=\log \dfrac{1+\sin x}{1- \sin x}$
この動画を見る
次の関数を微分せよ。
①$y=(\log x)^2$
②$y=\dfrac{\log x}{x}$
③$y=\log(x+\sqrt{x^2+3})$
④$y=\log \dfrac{1+\sin x}{1- \sin x}$
横浜市立(医)高校数学 Japanese university entrance exam questions

単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#横浜市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
横浜市立大学過去問題
(1)$x^3-x^2-x+k=0 \quad (k>1)$
実根は1個であることを示せ。
(2)(1)の方程式の3根の絶対値はいずれも1より大きいことを示せ。
この動画を見る
横浜市立大学過去問題
(1)$x^3-x^2-x+k=0 \quad (k>1)$
実根は1個であることを示せ。
(2)(1)の方程式の3根の絶対値はいずれも1より大きいことを示せ。
【高校数学】数Ⅲ-98 対数関数の導関数①

単元:
#数Ⅱ#指数関数と対数関数#対数関数#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$(\log x)’=①,\quad (\log_a x)'=②,\quad (\log \vert x \vert)'=③,$
$(\log_a \vert x \vert)'=④$
次の関数を微分せよ。
⑤$y=\log 6x$
⑥$y=\log(3x^2+1)$
⑦$y=x\log 2x$
⑧$y=\log_{10} (1-2x)$
⑨$y=\log \vert x^2-1 \vert$
⑩$y=\log_3 \vert x+5 \vert$
この動画を見る
$(\log x)’=①,\quad (\log_a x)'=②,\quad (\log \vert x \vert)'=③,$
$(\log_a \vert x \vert)'=④$
次の関数を微分せよ。
⑤$y=\log 6x$
⑥$y=\log(3x^2+1)$
⑦$y=x\log 2x$
⑧$y=\log_{10} (1-2x)$
⑨$y=\log \vert x^2-1 \vert$
⑩$y=\log_3 \vert x+5 \vert$
【高校数学】数Ⅲ-95 合成関数の微分法②

単元:
#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の関数を微分せよ。
①$y=\sqrt{x^2-3x-1}$
②$y=\sqrt{(2x-3)^3}$
③$y=\left(\dfrac{2x}{x^2+1}\right)^4$
④$y=\sqrt{\dfrac{x+1}{x-3}}$
この動画を見る
次の関数を微分せよ。
①$y=\sqrt{x^2-3x-1}$
②$y=\sqrt{(2x-3)^3}$
③$y=\left(\dfrac{2x}{x^2+1}\right)^4$
④$y=\sqrt{\dfrac{x+1}{x-3}}$
【高校数学】数Ⅲ-94 合成関数の微分法①

単元:
#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の関数を微分せよ。
①$y=(x^2-5)^3$
②$y=(x^3+3x)^4$
③$y=(2x^3-3x+1)^5$
④$y=\dfrac{1}{(x^2-3)}^2$
⑤$y=\{(x-1)(x^2+4)\}^4$
この動画を見る
次の関数を微分せよ。
①$y=(x^2-5)^3$
②$y=(x^3+3x)^4$
③$y=(2x^3-3x+1)^5$
④$y=\dfrac{1}{(x^2-3)}^2$
⑤$y=\{(x-1)(x^2+4)\}^4$
【高校数学】数Ⅲ-93 商の微分法

単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の関数を微分せよ。
①$y=\dfrac{2x}{x^2+1}$
②$y=\dfrac{1+x^2}{1-x^2}$
③$y=\dfrac{x^2+x^2-5x+2}{x^2}$
④$y=\dfrac{x^2-4x+3}{\sqrt x}$
この動画を見る
次の関数を微分せよ。
①$y=\dfrac{2x}{x^2+1}$
②$y=\dfrac{1+x^2}{1-x^2}$
③$y=\dfrac{x^2+x^2-5x+2}{x^2}$
④$y=\dfrac{x^2-4x+3}{\sqrt x}$
【高校数学】数Ⅲ-92 積の微分法

単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の関数を微分せよ。
①$y=(x^2+2x)(x+3)$
②$y=(5x^2-3x-4)(2x+1)$
③$y=(x^2-3x+2)(x^2+1)$
④$y=(x+1)(x+2)(x+3)$
この動画を見る
次の関数を微分せよ。
①$y=(x^2+2x)(x+3)$
②$y=(5x^2-3x-4)(2x+1)$
③$y=(x^2-3x+2)(x^2+1)$
④$y=(x+1)(x+2)(x+3)$
【高校数学】数Ⅲ-91 微分(復習編)

単元:
#微分とその応用#微分法#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の関数を微分せよ。
①$y=x^4+x^3+x^2+x+1$
②$y=-2x^3+7x+4$
③$y=-\dfrac{3}{2}x^4+\dfrac{1}{3}x^3-5x$
④$y=(x^3-1)^2$
⑤関数$f(x)=\vert x(x-2) \vert $が$x=2$で
微分可能であるかどうかを調べよ。
この動画を見る
次の関数を微分せよ。
①$y=x^4+x^3+x^2+x+1$
②$y=-2x^3+7x+4$
③$y=-\dfrac{3}{2}x^4+\dfrac{1}{3}x^3-5x$
④$y=(x^3-1)^2$
⑤関数$f(x)=\vert x(x-2) \vert $が$x=2$で
微分可能であるかどうかを調べよ。
東工大 極限値 高校数学 Japanese university entrance exam questions

単元:
#大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
1982東京工業大学過去問題
n自然数
半径$\frac{1}{n}$の円を重ならないように半径1の円に外接させる。このとき外接する円の最大個数を$a_n$とする。
$\displaystyle \lim_{n \to \infty} \frac{a_n}{n}$を求めよ。
この動画を見る
1982東京工業大学過去問題
n自然数
半径$\frac{1}{n}$の円を重ならないように半径1の円に外接させる。このとき外接する円の最大個数を$a_n$とする。
$\displaystyle \lim_{n \to \infty} \frac{a_n}{n}$を求めよ。
名古屋市立(医)lim(x→0)sinx/x=1証明 高校数学 Japanese university entrance exam questions

単元:
#大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#名古屋市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
名古屋市立大学過去問題
$\displaystyle \lim_{ x \to 0 } \frac{sinx}{x}=1$
この動画を見る
名古屋市立大学過去問題
$\displaystyle \lim_{ x \to 0 } \frac{sinx}{x}=1$
福田の一夜漬け数学〜積分・面積と体積、媒介変数表示(1)〜受験編

単元:
#平面上の曲線#積分とその応用#定積分#面積・体積・長さ・速度#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\theta-\sin\theta \\
y=1-\cos\theta
\end{array}
\right.
\end{eqnarray}(0 \leqq \theta \leqq 2\pi)$で表される曲線をCとする。
(1)Cとx軸で囲まれる部分の領域をDとする。Dの面積Sを求めよ。
(2)Dをx軸の周りに1回転してできる立体の体積Vを求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=t^2+1 \\
y=2-t-t^2
\end{array}
\right.
\end{eqnarray}(-2 \leqq t \leqq 1)$で表される曲線とx軸で囲まれた面積を求めよ。
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\theta-\sin\theta \\
y=1-\cos\theta
\end{array}
\right.
\end{eqnarray}(0 \leqq \theta \leqq 2\pi)$で表される曲線をCとする。
(1)Cとx軸で囲まれる部分の領域をDとする。Dの面積Sを求めよ。
(2)Dをx軸の周りに1回転してできる立体の体積Vを求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=t^2+1 \\
y=2-t-t^2
\end{array}
\right.
\end{eqnarray}(-2 \leqq t \leqq 1)$で表される曲線とx軸で囲まれた面積を求めよ。
日本医科大学 バーゼル問題 高校数学 Japanese university entrance exam questions

単元:
#大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
日本医科大学過去問題
$abc=1$ $a>0,b>0,c>0$
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geqq \sqrt{a} + \sqrt{b} +\sqrt{c}$を示せ
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c} - \sqrt{a} - \sqrt{b} -\sqrt{c}$
$n \to \infty \frac{3}{2} \leqq 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots + \frac{1}{n^2} \leqq 2$
この動画を見る
日本医科大学過去問題
$abc=1$ $a>0,b>0,c>0$
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geqq \sqrt{a} + \sqrt{b} +\sqrt{c}$を示せ
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c} - \sqrt{a} - \sqrt{b} -\sqrt{c}$
$n \to \infty \frac{3}{2} \leqq 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots + \frac{1}{n^2} \leqq 2$
【高校数学】数Ⅲ-88 関数の連続性③

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①関数$f(x)=\lim_{n\to\infty}\dfrac{x^{2n+1}+1}{x^{2n}+1}$のグラフをかき、
$f(x)$が不連続となる$x$の値を求めよ。
この動画を見る
①関数$f(x)=\lim_{n\to\infty}\dfrac{x^{2n+1}+1}{x^{2n}+1}$のグラフをかき、
$f(x)$が不連続となる$x$の値を求めよ。
大阪大学 対数 不等式 質問への返答「対数微分法」高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#微分法#色々な関数の導関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
大阪大学過去問題
xの範囲を求めよ
$\log_2(1-x)+\log_4(x+4) \leqq 2$
この動画を見る
大阪大学過去問題
xの範囲を求めよ
$\log_2(1-x)+\log_4(x+4) \leqq 2$
【高校数学】数Ⅲ-87 関数の連続性②

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の関数$f(x)$が、$x=0$で連続であるか不連続であるかを調べよ。
ただし、$[x]$は実数$x$を超えない最大の整数とする。
①$f(x)=3x^2$
②$f(x)=[\cos x]$
③$f(x)=x^2+\dfrac{x^2}{1+x^2}+\dfrac{x^2}{(1+x^2)^2}+・・・$
この動画を見る
次の関数$f(x)$が、$x=0$で連続であるか不連続であるかを調べよ。
ただし、$[x]$は実数$x$を超えない最大の整数とする。
①$f(x)=3x^2$
②$f(x)=[\cos x]$
③$f(x)=x^2+\dfrac{x^2}{1+x^2}+\dfrac{x^2}{(1+x^2)^2}+・・・$
【高校数学】数Ⅲ-86 関数の連続性①

単元:
#関数と極限#微分とその応用#関数の極限#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
(1)次の不等式を満たす実数$x$の値の範囲を、区間で示す記号で示せ。
①$3\lt x \lt 7$
②$-2 \leqq x \leqq 0$
③$-4 \lt x \leqq 5$
④$x \geqq 12$
(2)次の関数が連続である区間を求めよ。
⑤$f(x)=\sqrt{-3x+2}$
⑥$f(x)=\dfrac{x^2+1}{x^2-3x+2}$
⑦$f(x)=\log_2 \vert x \vert$
この動画を見る
(1)次の不等式を満たす実数$x$の値の範囲を、区間で示す記号で示せ。
①$3\lt x \lt 7$
②$-2 \leqq x \leqq 0$
③$-4 \lt x \leqq 5$
④$x \geqq 12$
(2)次の関数が連続である区間を求めよ。
⑤$f(x)=\sqrt{-3x+2}$
⑥$f(x)=\dfrac{x^2+1}{x^2-3x+2}$
⑦$f(x)=\log_2 \vert x \vert$
【高校数学】数Ⅲ-85 関数の決定問題

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$\displaystyle \lim_{x\to\infty} \dfrac{\sqrt{{x^2+2}-(ax+b)}}{x}=3$が成り立つように、
定数$a,b$の値を定めよ。
この動画を見る
①$\displaystyle \lim_{x\to\infty} \dfrac{\sqrt{{x^2+2}-(ax+b)}}{x}=3$が成り立つように、
定数$a,b$の値を定めよ。
東大入試問題 無限級数 数列の和 Japanese university entrance exam questions Tokyo University

単元:
#大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
東京大学過去問題
無限級数
$\frac{r}{1-r^2}$+$\frac{r^2}{1-r^4}$+$\frac{r^4}{1-r^8}$+$\cdots$+$\frac{r^{2^{n-1}}}{1-r^{2^{n}}}$
この動画を見る
東京大学過去問題
無限級数
$\frac{r}{1-r^2}$+$\frac{r^2}{1-r^4}$+$\frac{r^4}{1-r^8}$+$\cdots$+$\frac{r^{2^{n-1}}}{1-r^{2^{n}}}$
【高校数学】数Ⅲ-80 関数の極限⑤(指数関数)

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の極限を求めよ。
①$\displaystyle \lim_{x\to \infty}(\sqrt 2)^x$
②$\displaystyle \lim_{x\to \infty}\left(\dfrac{1}{3}\right)^x$
③$\displaystyle \lim_{x\to \infty}2^{-x}$
④$\displaystyle \lim_{x\to \infty}\dfrac{5^x-7^x}{2^x+7^x}$
⑤$\displaystyle \lim_{x\to \infty}(2^x-3^x)$
⑥$\displaystyle \lim_{x\to \infty}(3^x-2^{2x+1})$
この動画を見る
次の極限を求めよ。
①$\displaystyle \lim_{x\to \infty}(\sqrt 2)^x$
②$\displaystyle \lim_{x\to \infty}\left(\dfrac{1}{3}\right)^x$
③$\displaystyle \lim_{x\to \infty}2^{-x}$
④$\displaystyle \lim_{x\to \infty}\dfrac{5^x-7^x}{2^x+7^x}$
⑤$\displaystyle \lim_{x\to \infty}(2^x-3^x)$
⑥$\displaystyle \lim_{x\to \infty}(3^x-2^{2x+1})$
【高校数学】数Ⅲ-79 関数の極限④

単元:
#関数と極限#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の極限を求めよ。
①$\displaystyle \lim_{x\to \infty}(3x^2-5x+2)$
②$\displaystyle \lim_{x\to \infty}\dfrac{5x+4}{x^2+3x-1}$
③$\displaystyle \lim_{x\to \infty}\dfrac{2x^2-1}{3x^2-4x+2}$
④$\displaystyle \lim_{x\to \infty}\dfrac{x^2+3x}{x-2}$
⑤$\displaystyle \lim_{x\to \infty}(\sqrt{x^2+3x-1}+x)$
この動画を見る
次の極限を求めよ。
①$\displaystyle \lim_{x\to \infty}(3x^2-5x+2)$
②$\displaystyle \lim_{x\to \infty}\dfrac{5x+4}{x^2+3x-1}$
③$\displaystyle \lim_{x\to \infty}\dfrac{2x^2-1}{3x^2-4x+2}$
④$\displaystyle \lim_{x\to \infty}\dfrac{x^2+3x}{x-2}$
⑤$\displaystyle \lim_{x\to \infty}(\sqrt{x^2+3x-1}+x)$
【高校数学】数Ⅲ-78 関数の極限③(右側左側)

単元:
#関数と極限#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の極限を求めよ。
①$\displaystyle \lim_{x\to -0}\dfrac{\vert x \vert}{x}$
②$\displaystyle \lim_{x\to 3+0}\dfrac{x^2-3x}{\vert x-3 \vert}$
③$\displaystyle \lim_{x\to 1-0}\dfrac{\vert x-1\vert}{x^3-1}$
④$x\to 0$のときの$\dfrac{x}{\vert x\vert}$
この動画を見る
次の極限を求めよ。
①$\displaystyle \lim_{x\to -0}\dfrac{\vert x \vert}{x}$
②$\displaystyle \lim_{x\to 3+0}\dfrac{x^2-3x}{\vert x-3 \vert}$
③$\displaystyle \lim_{x\to 1-0}\dfrac{\vert x-1\vert}{x^3-1}$
④$x\to 0$のときの$\dfrac{x}{\vert x\vert}$
【高校数学】数Ⅲ-77 関数の極限②

単元:
#関数と極限#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の等式が成り立つように、定数$a,b$の値を定めよ。
①$\displaystyle \lim_{n\to 2}\dfrac{x^2+ax+b}{x+2}=3$
②$\displaystyle \lim_{x\to 3}\dfrac{\sqrt{3x+a}-b}{x-3}=\dfrac{3}{8}$
この動画を見る
次の等式が成り立つように、定数$a,b$の値を定めよ。
①$\displaystyle \lim_{n\to 2}\dfrac{x^2+ax+b}{x+2}=3$
②$\displaystyle \lim_{x\to 3}\dfrac{\sqrt{3x+a}-b}{x-3}=\dfrac{3}{8}$
【高校数学】数Ⅲ-76 関数の極限①

単元:
#関数と極限#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の極限を求めよ。
①$\displaystyle \lim_{n\to2}(x^2-3x+1)$
②$\displaystyle \lim_{n\to2}\dfrac{x+1}{x^2-x+1}$
③$\displaystyle \lim_{n\to2}\dfrac{x^2-x-2}{x+1}$
④$\displaystyle \lim_{n\to2}\dfrac{2x^2+x-3}{x^2+2x-3}$
⑤$\displaystyle \lim_{n\to2}\dfrac{x^3-1}{x^2-1}$
⑥$\displaystyle \lim_{n\to2}\dfrac{1}{x}\left(\dfrac{2}{x-2}+1\right)$
この動画を見る
次の極限を求めよ。
①$\displaystyle \lim_{n\to2}(x^2-3x+1)$
②$\displaystyle \lim_{n\to2}\dfrac{x+1}{x^2-x+1}$
③$\displaystyle \lim_{n\to2}\dfrac{x^2-x-2}{x+1}$
④$\displaystyle \lim_{n\to2}\dfrac{2x^2+x-3}{x^2+2x-3}$
⑤$\displaystyle \lim_{n\to2}\dfrac{x^3-1}{x^2-1}$
⑥$\displaystyle \lim_{n\to2}\dfrac{1}{x}\left(\dfrac{2}{x-2}+1\right)$
