平面上のベクトル - 質問解決D.B.(データベース)

平面上のベクトル

【数C】【平面上のベクトル】ベクトルを使った面積、内心 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
次の3点を頂点とする三角形の面積Sを求めよ。
(1)O(0,0),A(2,3),B(1,2)
(2)A(1,2),B(2+3,1+3),C(2,2+3)
(3)A(1+3,2),B(3,5),C(4+3,1)

問題2
OABにおいて、OA=a,OB=bとする。|a|=2,|b|=3,|a+b|=4のとき、OABの面積Sを求めよ。

問題3
A=60°,AB=8,AC=5であるABCの内心をIとする。AB=b,AC=cとするとき、AIb,cを用いて表せ。

問題4
三角形ABCの辺BC, CA, ABの中点をそれぞれA(1), B(1), C(1)とし、平面上の任意の点Oに対し、線分OA, OB, OCの中点をそれぞれA(2), B(2), C(2)とする。線分A(1)A(2), B(1)B(2),C(1)C(2)の中点は一致することを証明せよ。
この動画を見る 

【数C】【平面上のベクトル】ベクトル方程式1 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
ABCの重心をG、辺BCの中点をMとし、GA=a,GB=bとする。
(1) AMGCa,bを用いて表せ。
(2)点Mを通り、辺CAに平行な直線上の点をPとし、GP=pとする。この直線のベクトル方程式を、a,b,pを用いて求めよ。

問題2
2直線 l:(x,y)=(0,3)+s(1,2),m:(x,y)=(6,1)+t(2,3)について、次の問いに答えよ。ただし、s,tは媒介変数とする。
(1)lmの交点の座標を求めよ。
(2)点P(4,1)からlに垂線PQを下ろす。このとき、点Qの座標を求めよ。

問題3
OABに対して、点Pが次の条件を満たしながら動くとき、点Pの存在範囲を図示せよ。
(1) OP=sOA+tOB,s+t=4,s0,t0
(2) OP=sOA+tOB,0s+t4,s0,t0
この動画を見る 

【数C】【平面上のベクトル】ベクトルと図形3 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
ABCにおいて、AB=3,AC=2,A=60,外心をOとする。AB=b,AC=cとするとき、AOb,cを用いて表せ。

問題2
平行四辺形ABCDにおいて、次の等式が成り立つことを証明せよ。
2(AB2+BC2)AC2BD2

問題3
ABCの辺BCを1:2に内分する点をDとする。このとき、等式2AB2+AC2=3(AD2+2BD2)が成り立つことを証明せよ。
この動画を見る 

【数C】【平面上のベクトル】位置ベクトル ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
ABCの重心をGとするとき、この平面上の任意の点Pに対して、等式AP+BP2CP=3GCが成り立つことを証明せよ。

問題2
ABCと点Pに対して、次の等式が成り立つとき、点Pの位置をいえ。
(1) PA+PB+PC=AB
(2)AP+BP+CP=0
(3)PA+PC=AC

問題3
ABCと点Pに対して、等式 5AP+4BP+3CP=0が成り立っている。
(1)点Pの位置をいえ。
(2)PBC:PCA:PABを求めよ。
この動画を見る 

【数C】【平面上のベクトル】ベクトルの成分5 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
a=(3,1) ,b=(1,2) のとし、c=a+tb (tは実数)とする。
(1) |c|=15 のとき、tの値を求めよ。
(2) |c|の最小値と、そのときのtの値を求めよ。
この動画を見る 

【数C】【平面上のベクトル】ベクトルの成分4 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
a=(2,2) ,b=(3,1) のとき、xbaに平行で、
かつ |x+b|=4 となるようなx を成分表示せよ。
この動画を見る 

【数C】【平面上のベクトル】ベクトルの成分3 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
a=(x,1) ,b=(2,3) について、
a+3bba
平行になるように、xの値を定めよ。
この動画を見る 

【数C】【平面上のベクトル】ベクトルの成分2 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
平行四辺形の3つの頂点が A(-2 ,2) ,B(1 ,- 3) ,C(3 ,0) のとき、第4の頂点Dの座標を求めよ。
この動画を見る 

【数C】【平面上のベクトル】ベクトルの成分1 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
a=(5,0) ,b=(2,3) とする。
等式 2x+y=a , x+2y=b を満たすx,y を成分表示せよ。
この動画を見る 

【数C】【平面上のベクトル】ベクトルの基本計算4 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
四角形ABCDについて、次のことを証明せよ。
四角形ABCDが平行四辺形である ⇔ AC+BD=2AD



この動画を見る 

【数C】【平面上のベクトル】ベクトルの基本計算3 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
平行四辺形ABCDの辺AB=a,AD=b , AE=u ,AF=v とするとき、a ,bu ,v を用いて表せ。


BCの中点をE、辺CD上の点でCF:FD=3:2 を満たす点をFとする。
この動画を見る 

【数C】【平面上のベクトル】ベクトルの基本計算2 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)OA=2a ,OA=3b ,OP=6b4a であるとき、
 OP//AB であることを示せ。ただし、a0 ,b0 で、ab は平行でないとする。
(2)OA=a ,OB=b ,OP=3a2b ,OQ=3aである
とき、PQ//OB であることを示せ。ただし、a0 , b0 で、ab は平行でないとする。
この動画を見る 

【数C】【平面上のベクトル】ベクトルの基本計算1 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式を同時に満たすベクトル x ,ya ,bを用いて表せ。


(1)
2x+y=a
xy=b

(2)
2b3y=a+b
x+y=ab

この動画を見る 

【数C】【平面上のベクトル】ベクトルと図形2 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
OABにおいて、辺OBの中点をMAB1:2に内分する点をC、辺OA2:3に内分する点をD、線分CMと線分BDの交点をPとする。また、OA=aOB=bとする。
(1)OPa,bを用いて表せ。
(2)直線OPと辺ABの交点をQとするとき、AQ:QBを求めよ。

問題2
OA=3,OC=2である長方形OABCがある。辺OA1:2に内分する点をD、辺AB3:1に内分する点をEとするとき、CDOEであることを証明せよ。

問題3
鋭角三角形ABCの外心をO、辺BCの中点をMとする。頂点Aから辺BCに垂線ANを下ろし、線分AN上に点HAH=2OMとなるようにとると、HABCの垂心であることを証明せよ。

問題4
OA=6,OB=4,AOB=60°であるOABにおいて、頂点Aから辺OBに垂線AC,頂点Bから辺OAに垂線BDを下ろす。線分ACと線分BDの交点をHとするとき、OHOA,OBを用いて表せ。
この動画を見る 

【数C】【平面上のベクトル】ベクトルと図形1 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
ABCの辺ABBCCAを2:1に内分する点を、それぞれA1B11C1とする。更に、A1B1C1の辺A1B1B1C1を2:1に内分する点を、それぞれA2B2とする。このとき、A2B2//ABであることを示せ。

問題2
△ABCにおいて、辺BCを2:1に外分する点をP,辺ABを1:2に内分する点をQ、辺CAの中点をRとする。
(1)3点P,Q,Rは一直線上にあることを証明せよ。
(2)QR:QPを求めよ。

問題3
平行四辺形ABCDにおいて、辺ABを3:2に内分する点をP、対角線BDを2:5に内分する点をQとする。
(1)3点P,Q,Cは一直線上にあることを証明せよ。
(2)PQ:QCを求めよ。

問題4
△ABCにおいて、辺ABを1:2に内分する点をD、辺ACを3:1に内分する点をEとし、線分CD、BEの交点をPとする。AB=bAC=cとするとき、APbcを用いて表せ。
この動画を見る 

大学入試問題#899「初めてのベクトルやってみた」 #北海道大学(2024)

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: ますただ
問題文全文(内容文):
三角形OAB
|OA|=3, |AB|=5, OA.AB=10
を満たしているとする。
三角形OABの内接円の中心をIとし、この内接円と辺OAの接点をHとする。

1.辺OBの長さを求めよ。
2.OIOAOBを用いて表せ。
3.HIOAOBを用いて表せ。

出典:2024年北海道大学
この動画を見る 

【高校数学】ベクトルにおける点の存在範囲のコツ【数学のコツ】

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルにおける点の存在範囲のコツを解説していきます.
この動画を見る 

【高校数学】ベクトルで表すときのコツ【数学のコツ】

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルで表すときのコツを解説していきます.
この動画を見る 

【短時間でポイントチェック!!】ベクトルの内積〔現役講師解説、数学〕

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
|a|=2,|b|=3,ab=3のときP=|a+tb|を最小にする実数tの値とそのときの最小値は?
この動画を見る 

福田の数学〜慶應義塾大学2024年商学部第2問(2)〜ベクトルの列とその絶対値の評価

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#指数関数と対数関数#対数関数#数列#平面上のベクトルと内積#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
2 (2)ベクトルの列 a1, a2, ..., an, ...を条件
a1=(1,0), a2=(12,32), an+2=an+1an|an|2an
で定める。このときa9=(,)である。また、|an|<1025を満たす最小の自然数nである。ただし、必要であれば、log102=0.301を近似として用いてよい。
この動画を見る 

福田の数学〜北海道大学2024年理系第4問〜三角形の内心の位置ベクトル

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
4 三角形OABが、|OA|=3, |AB|=5, OAOB=10 を満たしているとする。
三角形OABの内接円の中心をIとし、この内接円と辺OAの接点をHとする。
(1)辺OBの長さを求めよ。
(2)OIOAOBを用いて表せ。
(3)HIOAOBを用いて表せ。
この動画を見る 

福田の数学〜慶應義塾大学2024年看護医療学部第2問(1)〜正六角形の位置ベクトル

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
2 (1)一辺の長さが2の正六角形ABCDEFにおいて、辺CDの中点をMとし、直線BEと直線AMの交点をPとする。このとき、BC, AM, BPをそれぞれAB, AFを用いて表すとBC=    , AM=    , BP=    である。また、AMBPの内積AMBPの値は    である。
この動画を見る 

福田の数学〜東京大学2018年理系第3問〜軌跡と領域そして極限

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#関数と極限#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
放物線y=x2のうち1x1を満たす部分をCとする。座標平面上の原点Oと点A(1,0)を考える。K>0を実数とする。点PがCの上を動き、天Qが線分OA上を動くときOR=1kOP+kOQを満たす点Rが動く領域の面積をS(k)とする。
S(k)およびlimk+0S(k),limkS(k)を求めよ。

2018東京大学理系過去問
この動画を見る 

この公式の意味分かる?

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
内積の公式に関して解説していきます。
この動画を見る 

2024年共通テスト徹底解説〜数学ⅡB第5問ベクトル〜福田の入試問題解説

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト#数C
指導講師: 福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅡB第5問ベクトルを徹底解説します

この動画を見る 

福田の数学〜2点が動くときはどちらか一方を固定する〜東京大学2018年文系第4問〜平面ベクトルと点の動ける領域

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
4 放物線y=x2 のうち1x1をみたす部分を C とする。座標平面上の原点Oと点A(1,0)を考える。
( 1 )点 P が C 上を動くとき、OQ=2OP をみたす点 Q の軌跡を求めよ。
( 2 )点 P が C 上を動き、点 R が線分 OA 上を動くときOS=2OPORをみたす点 S が動く領域を座標平面上に図示し、その面積を求めよ。

2018東京大学文過去問
この動画を見る 

福田の数学〜3次方程式の解の存在範囲に関する問題〜東京大学2018年文系第3問〜関数の増減と方程式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
a>0とし、f(x)=x33a2xとおく。
( 1 )x1でf(x)が単調に増加するための aについての条件を求めよ。
( 2 )次の 2 条件を満たす点(a,b)の動きうる範囲を求め、座標平面上に図示せよ。
条件 1 :方程式f(x)=bは相異なる 3 実数解をもつ。
条件 2 :さらに方程式f(x)=bの解をα<β<γとすると、β1 である。

2018東京大学文過去問
この動画を見る 

共通テストでめちゃ使えるベクトルの裏技(s, t問題)(公式)

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#センター試験・共通テスト関連#共通テスト#数学(高校生)#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テストで使えるベクトルの裏技説明動画です(s, t問題)
この動画を見る 

杏林大学2023医学部第2問訂正動画

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
点 O を原点とする座標空間に 3 点 A(-I, 0 , ー 2 ), B(-2, ー 2 , ー 3 ), C(1, 2 , ー 2 )がある。
(a)ベクトルABACABAC= アイ であり、ABCウエである。ABCの外接円の中心を点 P とすると、
AP=AB+AC
が成り立つ。
(b)ABCの重心を点 G とすると、OG=(OA+OB+OC)であり、線分OBを 2 : 1 に内分する点を Q とすると、AQ=(コサ,スセ,)となる。
(c)線分 OC を 2 : I に内分する点を R とし、 3 点 A, Q, R を通る平面をαと直線OG との交点を S とする。点 S は平面にあることから、
OS=tOA+uOB+vOC
(ただし、t,u,vt+u+v=1を満たす実数)
と書けるので、OS=OGとなることがわかる。
平面α上において、点Sは三角形AQRのに存在し、四面体 O-AQR の体積は四面体のO-ABCの体積のfrac倍である。

2023杏林大学過去問
この動画を見る 

福田の数学〜共通テスト対策にもバッチリ〜杏林大学2023年医学部第2問後編〜平面と直線の交点の位置ベクトルと体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
点 O を原点とする座標空間に 3 点 A(-1,0,-2), B(-2,-2, -3 ), C(1, 2,- 2 )がある。
(a)ベクトルABACABAC= アイ であり、ABCウエである。ABCの外接円の中心を点 P とすると、
AP=AB+AC
が成り立つ。
(b)ABCの重心を点 G とすると、OG=(OA+OB+OC)であり、線分OBを 2 : 1 に内分する点を Q とすると、AQ=(コサ,スセ,)となる。
(c)線分 OC を 2 : I に内分する点を R とし、 3 点 A, Q, R を通る平面をαと直線OG との交点を S とする。点 S は平面にあることから、
OS=tOA+uOB+vOC
(ただし、t,u,vt+u+v=1を満たす実数)
と書けるので、OS=OGとなることがわかる。
平面α上において、点Sは三角形AQRのに存在し、四面体 O-AQR の体積は四面体のO-ABCの体積のfrac倍である。

2023杏林大学過去問
この動画を見る 
PAGE TOP preload imagepreload image