平面上のベクトル
平面上のベクトル
福田の数学〜青山学院大学2025理工学部第5問〜鋭角三角形の条件と垂心の位置ベクトル

単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{5}$
$\triangle OAB$は鋭角三角形であり、
$\vert \overrightarrow{OA}\vert=4,\vert \overrightarrow{OB}\vert=3$
を満たしている。
$\overrightarrow{OA}\cdot \overrightarrow{OB}=k$とおくとき、以下の問いに答えよ。
(1)$k$のとり得る値の範囲を求めよ。
上で与えた$\triangle OAB$の頂点$A,B$から
それぞれの対辺に下ろした$2$本の垂線の交点
を$H$とし、辺$AB$を$2:1$に内分する点を$C$とする。
(2)$\overrightarrow{OH}$を$\overrightarrow{OA},\overrightarrow{OB}$および$k$を用いて表せ。
(3)$3$点$O,H,C$が同一直線上にあるとき、
$k$の値と$\dfrac{OH}{OC}$を求めよ。
$2025$年青山学院大学理工学部過去問題
この動画を見る
$\boxed{5}$
$\triangle OAB$は鋭角三角形であり、
$\vert \overrightarrow{OA}\vert=4,\vert \overrightarrow{OB}\vert=3$
を満たしている。
$\overrightarrow{OA}\cdot \overrightarrow{OB}=k$とおくとき、以下の問いに答えよ。
(1)$k$のとり得る値の範囲を求めよ。
上で与えた$\triangle OAB$の頂点$A,B$から
それぞれの対辺に下ろした$2$本の垂線の交点
を$H$とし、辺$AB$を$2:1$に内分する点を$C$とする。
(2)$\overrightarrow{OH}$を$\overrightarrow{OA},\overrightarrow{OB}$および$k$を用いて表せ。
(3)$3$点$O,H,C$が同一直線上にあるとき、
$k$の値と$\dfrac{OH}{OC}$を求めよ。
$2025$年青山学院大学理工学部過去問題
福田のおもしろ数学568〜平面上の任意の点が2つの有理点を結んだ直線上にあるか

単元:
#平面上のベクトル#平面上の曲線#平面上のベクトルと内積#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$x,y$座標がともに有理数である平面上の点を
有理点と呼ぶ。
平面上のすべての点は$2$つの有理点で定める
直線上に必ず存在するだろうか?
この動画を見る
$x,y$座標がともに有理数である平面上の点を
有理点と呼ぶ。
平面上のすべての点は$2$つの有理点で定める
直線上に必ず存在するだろうか?
福田の数学〜早稲田大学2025人間科学部第3問〜外心と内心の位置ベクトル

単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$
(1)$\triangle ABC$において$AB=6,AC=4,$
$\cos A=\dfrac{1}{4}$とする。
$\triangle ABC$の外心を$H$とし、直線$AH$が
$\triangle ABC$の外接円と交わる点のうち、
点$A$とは異なる点を$P$とする。
このとき、$\overrightarrow{AP}=\dfrac{\boxed{ス}}{\boxed{セ}}\overrightarrow{AB}+\dfrac{\boxed{ソ}}{\boxed{タ}}\overrightarrow{AC}$である。
(2)$\triangle ABC$において$AB=5,AC=6,$
$\cos A=\dfrac{1}{5}$とする。
$\triangle ABC$の内心を$K$とし、
直線$AK$が$\triangle ABC$の内接円と
交わる点のうち、点$A$に近いほうの点を
$Q$とする。
このとき、$\overrightarrow{AQ}=\dfrac{\boxed{チ}-\sqrt{\boxed{ツ}}}{\boxed{テ}}\overrightarrow{AK}$である。
$2025$年早稲田大学人間科学部過去問題
この動画を見る
$\boxed{3}$
(1)$\triangle ABC$において$AB=6,AC=4,$
$\cos A=\dfrac{1}{4}$とする。
$\triangle ABC$の外心を$H$とし、直線$AH$が
$\triangle ABC$の外接円と交わる点のうち、
点$A$とは異なる点を$P$とする。
このとき、$\overrightarrow{AP}=\dfrac{\boxed{ス}}{\boxed{セ}}\overrightarrow{AB}+\dfrac{\boxed{ソ}}{\boxed{タ}}\overrightarrow{AC}$である。
(2)$\triangle ABC$において$AB=5,AC=6,$
$\cos A=\dfrac{1}{5}$とする。
$\triangle ABC$の内心を$K$とし、
直線$AK$が$\triangle ABC$の内接円と
交わる点のうち、点$A$に近いほうの点を
$Q$とする。
このとき、$\overrightarrow{AQ}=\dfrac{\boxed{チ}-\sqrt{\boxed{ツ}}}{\boxed{テ}}\overrightarrow{AK}$である。
$2025$年早稲田大学人間科学部過去問題
福田の数学〜九州大学2025文系第2問〜円周上の2点との距離の2乗の和の最大値

単元:
#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#三角関数#三角関数とグラフ#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
半径$1$の円周$C$上の$2$点$A,B$は
$AB=\sqrt3$をみたすとする。
点$P$が円周$C$上を動くとき、
$AP^2+BP^2$の最大値を求めよ。
$2025$年九州大学文系過去問題
この動画を見る
$\boxed{2}$
半径$1$の円周$C$上の$2$点$A,B$は
$AB=\sqrt3$をみたすとする。
点$P$が円周$C$上を動くとき、
$AP^2+BP^2$の最大値を求めよ。
$2025$年九州大学文系過去問題
【数C】【ベクトルの内積】a,bはベクトルを表す。a≠0,b≠0とする。(1) |a+tb|を最小にする実数tの値t_0と,その時の最小値mを,|a|,|b|,a・bを用いて表せ。他1題

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\vec{a} \ne \vec{0}, \vec{b} \ne \vec{0}$ とする。
(1) $|\vec{a} + t \vec{b}|$ を最小にする実数 $t$ の値 $t_0$ と、
そのときの最小値 $m$ を、$|\vec{a}| , |\vec{b}| , \vec{a} + \vec{b}$ を用いて表せ。
(2) 更に、$\vec{a}$ と $\vec{b}$ が平行でないとき、
$\vec{a} + t_0 \vec{b}$ と $\vec{b}$ は垂直であることを示せ。
この動画を見る
$\vec{a} \ne \vec{0}, \vec{b} \ne \vec{0}$ とする。
(1) $|\vec{a} + t \vec{b}|$ を最小にする実数 $t$ の値 $t_0$ と、
そのときの最小値 $m$ を、$|\vec{a}| , |\vec{b}| , \vec{a} + \vec{b}$ を用いて表せ。
(2) 更に、$\vec{a}$ と $\vec{b}$ が平行でないとき、
$\vec{a} + t_0 \vec{b}$ と $\vec{b}$ は垂直であることを示せ。
【数C】【ベクトルの内積】x,yはベクトルを表す。|x-y|=1,|2y-x|=2,(x-y)⊥(2y-x)とする(1)x,yの大きさを求めよ(2)xとyのなす角をθとするとき,cosθの値を求めよ

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
$|\vec{x}-\vec{y}| = 1 , |2 \vec{y} - \vec{x}| = 2 , (\vec{x} - \vec{y}) \perp (2 \vec{y} - \vec{x})$ とする。
(1) $\vec{x} , \vec{y}$ の大きさを求めよ。
(2) $\vec{x}$ と $\vec{y}$ のなす角を $\theta$ とするとき、$\cos \theta$ の値を求めよ。
この動画を見る
$|\vec{x}-\vec{y}| = 1 , |2 \vec{y} - \vec{x}| = 2 , (\vec{x} - \vec{y}) \perp (2 \vec{y} - \vec{x})$ とする。
(1) $\vec{x} , \vec{y}$ の大きさを求めよ。
(2) $\vec{x}$ と $\vec{y}$ のなす角を $\theta$ とするとき、$\cos \theta$ の値を求めよ。
福田の数学〜九州大学2025理系第1問〜平面に垂直なベクトルの絶対値の最小

単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
座標空間内の$3$点$A(1,1,-5),B(-1,-1,7),C(1,-1,3)$を
通る平面を$\alpha$とする。
点$P(a,b,t)$を通り$\alpha$に垂直な直線と
$xy$平面との交点を$Q$とする。
(1)点$Q$の座標を求めよ。
(2)$t$がすべての実数値をとって変化するときの
$OQ$の最小値が$1$以下となるような
$a,b$の条件を求めよ。
ただし、$O$は原点である。
$2025$年九州大学理系過去問題
この動画を見る
$\boxed{1}$
座標空間内の$3$点$A(1,1,-5),B(-1,-1,7),C(1,-1,3)$を
通る平面を$\alpha$とする。
点$P(a,b,t)$を通り$\alpha$に垂直な直線と
$xy$平面との交点を$Q$とする。
(1)点$Q$の座標を求めよ。
(2)$t$がすべての実数値をとって変化するときの
$OQ$の最小値が$1$以下となるような
$a,b$の条件を求めよ。
ただし、$O$は原点である。
$2025$年九州大学理系過去問題
福田の数学〜大阪大学2025理系第3問〜空間図形と最大最小の軌跡

単元:
#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#微分法と積分法#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$
座標空間に$3$点$O(0,0,0),A(0,1,1),B(x,y,0)$がある。
$\angle OAP=30°$かつ$y\geqq 0$を満たすように
点$P$が動くとき、
$(x+1)(y+1)$の最大値と最小値を求めよ。
$2025$年大阪大学理系過去問題
この動画を見る
$\boxed{3}$
座標空間に$3$点$O(0,0,0),A(0,1,1),B(x,y,0)$がある。
$\angle OAP=30°$かつ$y\geqq 0$を満たすように
点$P$が動くとき、
$(x+1)(y+1)$の最大値と最小値を求めよ。
$2025$年大阪大学理系過去問題
福田の数学〜大阪大学2025理系第1問〜平面図形とベクトルの証明

単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
平面上の三角形$OAB$を考える。
$\angle AOB$は鋭角、$OA=3,OB=t$とする。
また、点$A$から直線$OB$に下ろした垂線と
直線$OB$の交点を$C$とし、$OC=1$とする。
線分$AB$を$2:1$に内分する点を$P$、点$A$から
直線$OP$に下ろした垂線と直線$OB$との交点を
$R$とする。
(1)内積$\overrightarrow{OA}・\overrightarrow{OB}$を$t$を用いて表せ。
(2)線分$OR$の長さを$t$を用いて表せ。
(3)線分$OB$の中点を$M$とする。
点$R$が線分$MB$上にあるとき、
$t$のとりうる値の範囲を求めよ。
$2025$年大阪大学理系過去問題
この動画を見る
$\boxed{1}$
平面上の三角形$OAB$を考える。
$\angle AOB$は鋭角、$OA=3,OB=t$とする。
また、点$A$から直線$OB$に下ろした垂線と
直線$OB$の交点を$C$とし、$OC=1$とする。
線分$AB$を$2:1$に内分する点を$P$、点$A$から
直線$OP$に下ろした垂線と直線$OB$との交点を
$R$とする。
(1)内積$\overrightarrow{OA}・\overrightarrow{OB}$を$t$を用いて表せ。
(2)線分$OR$の長さを$t$を用いて表せ。
(3)線分$OB$の中点を$M$とする。
点$R$が線分$MB$上にあるとき、
$t$のとりうる値の範囲を求めよ。
$2025$年大阪大学理系過去問題
【数C】【ベクトルの内積】ベクトルa=(1,1),b=(1,-1),c=(1,2)に対して,(xa+yb)⊥c,|xa+yb|=2√5であるように,実数x,yの値を求めよ。

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
ベクトル $\vec{a}=(1,1), \vec{b} = (1,-1), \vec{c} = (1,2)$ に対して、
$(x \vec{a} + y \vec{b}) \perp \vec{c}, |x \vec{a}+ y \vec{b}| = 2 \sqrt{5}$ であるように、
実数$x,y$ の値を定めよ。
この動画を見る
ベクトル $\vec{a}=(1,1), \vec{b} = (1,-1), \vec{c} = (1,2)$ に対して、
$(x \vec{a} + y \vec{b}) \perp \vec{c}, |x \vec{a}+ y \vec{b}| = 2 \sqrt{5}$ であるように、
実数$x,y$ の値を定めよ。
福田の数学〜立教大学2025理学部第1問(2)〜内積と絶対値の計算問題

単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(2)$2$つの平面ベクトル$\overrightarrow{a},\overrightarrow{b}$は、
$\vert \overrightarrow{a}+\overrightarrow{b} \vert=4,\vert \overrightarrow{a}-\overrightarrow{b} \vert =2$を満たすとする。
このとき、内積$\overrightarrow{a}・\overrightarrow{b}$の値は$\boxed{イ}$である。
また、$\vert 2\overrightarrow{a}-3\overrightarrow{b} \vert^2+\vert 3 \overrightarrow{a}-2\overrightarrow{b} \vert^2$の値は$\boxed{ウ}$である。
$2025$年立教大学理学部過去問題
この動画を見る
$\boxed{1}$
(2)$2$つの平面ベクトル$\overrightarrow{a},\overrightarrow{b}$は、
$\vert \overrightarrow{a}+\overrightarrow{b} \vert=4,\vert \overrightarrow{a}-\overrightarrow{b} \vert =2$を満たすとする。
このとき、内積$\overrightarrow{a}・\overrightarrow{b}$の値は$\boxed{イ}$である。
また、$\vert 2\overrightarrow{a}-3\overrightarrow{b} \vert^2+\vert 3 \overrightarrow{a}-2\overrightarrow{b} \vert^2$の値は$\boxed{ウ}$である。
$2025$年立教大学理学部過去問題
福田の数学〜立教大学2025経済学部第1問(6)〜2つのベクトルの両方に垂直なベクトル

単元:
#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(6)空間のベクトル$\vec{ p}=(x,y,z)$は
$\vec{b}=(0,3,2)$の両方に垂直であり、
$\vec{\vert p \vert}=7$かつ$z \gt 0$を
満たしている。
このとき、$\vec{p}=(\boxed{ク},\boxed{ケ},\boxed{コ})$である。
$2025$年立教大学経済学部過去問題
この動画を見る
$\boxed{1}$
(6)空間のベクトル$\vec{ p}=(x,y,z)$は
$\vec{b}=(0,3,2)$の両方に垂直であり、
$\vec{\vert p \vert}=7$かつ$z \gt 0$を
満たしている。
このとき、$\vec{p}=(\boxed{ク},\boxed{ケ},\boxed{コ})$である。
$2025$年立教大学経済学部過去問題
【数C】【ベクトルの内積】a・b= b・c=c・a=-2,a+b+c=0とする。(1) a , b , c の大きさを求めよ。(2) a と b のなす角θを求めよ

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = -2$ ,
$ \vec{a} + \vec{b} + \vec{c} = \vec{0}$とする。
(1) $\vec{a} , \vec{b} , \vec{c}$ の大きさを求めよ。
(2) $\vec{a}$ と $\vec{b}$ のなす角 $\theta$ を求めよ。
この動画を見る
$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = -2$ ,
$ \vec{a} + \vec{b} + \vec{c} = \vec{0}$とする。
(1) $\vec{a} , \vec{b} , \vec{c}$ の大きさを求めよ。
(2) $\vec{a}$ と $\vec{b}$ のなす角 $\theta$ を求めよ。
【数C】【ベクトルの内積】0でない2つのベクトルa, bについて、|a+b|=|a-b|ならばa⊥bであることを示せ

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\vec{0}$でない2つのベクトル$\vec{a}, \vec{b}$について、
$|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$ならば
$\vec{a} \perp \vec{b}$であることを示せ。
この動画を見る
$\vec{0}$でない2つのベクトル$\vec{a}, \vec{b}$について、
$|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$ならば
$\vec{a} \perp \vec{b}$であることを示せ。
【数C】【ベクトルの内積】ベクトルa=(-1,7)と45°の角をなし, 大きさが5であるベクトルxを求めよ

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
ベクトル$\vec{a}=(-1,7)$と
45°の角をなし,
大きさが5である
ベクトル$\vec{x}$を求めよ。
この動画を見る
ベクトル$\vec{a}=(-1,7)$と
45°の角をなし,
大きさが5である
ベクトル$\vec{x}$を求めよ。
【数C】【ベクトルの内積】2つのベクトルx, yが2x-y=(0,4), 2|x|=|y|, xy=6を満たすとき, x, yを求めよ。

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
2つのベクトル$\vec{x}, \vec{y}$が$2\vec{x}-\vec{y}=(0,4)$,
$2|\vec{x}|=|\vec{y}|, \vec{x}\cdot\vec{y}=6$を満たすとき,
$\vec{x}, \vec{y}$を求めよ。
この動画を見る
2つのベクトル$\vec{x}, \vec{y}$が$2\vec{x}-\vec{y}=(0,4)$,
$2|\vec{x}|=|\vec{y}|, \vec{x}\cdot\vec{y}=6$を満たすとき,
$\vec{x}, \vec{y}$を求めよ。
【数C】【ベクトルの内積】|a|=3,|b|=4,|a-b|=3のとき,|a+tb|を最小にする実数tの値とその最小値を求めよ。

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
ベクトル$|\vec{a}|=3$、$|\vec{b}|=4$、$|\vec{a}-\vec{b}|=3$のとき、
$|\vec{a}+t\vec{b}|$を最小にする実数tの値とその最小値を求めよ。
この動画を見る
ベクトル$|\vec{a}|=3$、$|\vec{b}|=4$、$|\vec{a}-\vec{b}|=3$のとき、
$|\vec{a}+t\vec{b}|$を最小にする実数tの値とその最小値を求めよ。
【数C】【ベクトルの内積】a = (4,2), b = (3,-1), x = (p,q)とする。xとb-aは平行で、x-bとaは垂直であるとき、pとqの値を求めよ。

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\vec{a}=(4, 2), \vec{b}=(3, -1), \vec{x}=(p, q)$とする。
$\vec{x}$と$\vec{b}-\vec{a}$は平行で, $\vec{x}-\vec{b}$と$\vec{a}$は垂直であるとき,
pとqの値を求めよ。
この動画を見る
$\vec{a}=(4, 2), \vec{b}=(3, -1), \vec{x}=(p, q)$とする。
$\vec{x}$と$\vec{b}-\vec{a}$は平行で, $\vec{x}-\vec{b}$と$\vec{a}$は垂直であるとき,
pとqの値を求めよ。
【数C】【ベクトルの内積】a| =|b| = 2, a - b = -2のとき、 a+bとa+tbが垂直になるように、 実数tの値を定めよ。

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
$|\vec{a}|=|\vec{b}|=2, \vec{a}\cdot\vec{b}=-2$のとき,
$\vec{a}+\vec{b}$と$\vec{a}+t\vec{b}$が垂直になるように,
実数tの値を定めよ。
この動画を見る
$|\vec{a}|=|\vec{b}|=2, \vec{a}\cdot\vec{b}=-2$のとき,
$\vec{a}+\vec{b}$と$\vec{a}+t\vec{b}$が垂直になるように,
実数tの値を定めよ。
【数C】【ベクトルの内積】a = √2, b = √5, a・b = -1のとき、 a+2bとa-bのなす角を求めよ。

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
$|\vec{a}|=\sqrt{2}, |\vec{b}|=\sqrt{5}, \vec{a}\cdot\vec{b}=-1$のとき,
$\vec{a}+2\vec{b}$と$\vec{a}-\vec{b}$のなす角$\theta$を求めよ。
この動画を見る
$|\vec{a}|=\sqrt{2}, |\vec{b}|=\sqrt{5}, \vec{a}\cdot\vec{b}=-1$のとき,
$\vec{a}+2\vec{b}$と$\vec{a}-\vec{b}$のなす角$\theta$を求めよ。
福田の数学〜慶應義塾大学2025経済学部第5問〜空間における平面と平面の交線

単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{5}$
座標平面の原点$O$を中心とする半径$1$の
球面を$C$、点$M(4,0,0)$を中心とする
半径$2$の球面上を$D$とする。
(1)$p,q$を実数とする。
$xy$平面上の直線$y=px+q$は、
球面$C$と$xy$平面が交わってできる円と
点$A_1$で接し、球面$D$と$xy$平面が交わって
できる円と点$A_2$で接し、かつ
$0 \lt p 1$を満たすとする。$p$と$q$の値を求めよ。
(2)$r,s$を実数とする。
$zx$平面上の直線$z=rx+s$は、球面$C$と
$zx$平面が交わってできる円と点$B_1$で接し、
球面$D$と$zx$平面が交わってできる円と点$B_2$で
接し、かつ、$r \lt -1$を満たすとする。
$r$と$s$の値を求めよ。
以下、点$E$は$\overrightarrow{ A_1 E }=(0,0,1)$を満たすとし、
$3$点$A_1,A_2,E$を通る平面を$\alpha$とする。
また、点$F$は$\overrightarrow{ B_1 E }=(0,1,0)$を満たすとし、
$3$点$B_1,B_2,F$を通る平面を$\beta$とする。
$\alpha$と$\beta$が交わってできる直線を
$\ell$とし、$\ell$と$xy$平面の交点を
$G,\ell$と$zx$平面の交点を$H$とする。
(3)$G$の座標を求めよ。
(4)$\ell$上の点$T$を、実数$t$を用いて
$\overrightarrow{OT}=\overrightarrow{OG}+t\overrightarrow{OH}$と表す。
$\triangle OMT$の面積が最小となる$t$の値の求めよ。
$2025$年慶應義塾大学経済学部過去問題
この動画を見る
$\boxed{5}$
座標平面の原点$O$を中心とする半径$1$の
球面を$C$、点$M(4,0,0)$を中心とする
半径$2$の球面上を$D$とする。
(1)$p,q$を実数とする。
$xy$平面上の直線$y=px+q$は、
球面$C$と$xy$平面が交わってできる円と
点$A_1$で接し、球面$D$と$xy$平面が交わって
できる円と点$A_2$で接し、かつ
$0 \lt p 1$を満たすとする。$p$と$q$の値を求めよ。
(2)$r,s$を実数とする。
$zx$平面上の直線$z=rx+s$は、球面$C$と
$zx$平面が交わってできる円と点$B_1$で接し、
球面$D$と$zx$平面が交わってできる円と点$B_2$で
接し、かつ、$r \lt -1$を満たすとする。
$r$と$s$の値を求めよ。
以下、点$E$は$\overrightarrow{ A_1 E }=(0,0,1)$を満たすとし、
$3$点$A_1,A_2,E$を通る平面を$\alpha$とする。
また、点$F$は$\overrightarrow{ B_1 E }=(0,1,0)$を満たすとし、
$3$点$B_1,B_2,F$を通る平面を$\beta$とする。
$\alpha$と$\beta$が交わってできる直線を
$\ell$とし、$\ell$と$xy$平面の交点を
$G,\ell$と$zx$平面の交点を$H$とする。
(3)$G$の座標を求めよ。
(4)$\ell$上の点$T$を、実数$t$を用いて
$\overrightarrow{OT}=\overrightarrow{OG}+t\overrightarrow{OH}$と表す。
$\triangle OMT$の面積が最小となる$t$の値の求めよ。
$2025$年慶應義塾大学経済学部過去問題
【数C】【平面上のベクトル】ベクトル方程式7 ※問題文は概要欄

単元:
#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
平面上の異なる2つの定点O, Aと任意の点Pに対し,
$\overrightarrow{OA}=\vec{a}$, $\overrightarrow{OP}=\vec{p}$とする。
次のベクトル方程式はどのような図形を表すか。
(1) $|\vec{p}+2\vec{a}|=|\vec{p}-2\vec{a}|$
(2) $2\vec{a}\cdot\vec{p}=|\vec{a}||\vec{p}|$
この動画を見る
平面上の異なる2つの定点O, Aと任意の点Pに対し,
$\overrightarrow{OA}=\vec{a}$, $\overrightarrow{OP}=\vec{p}$とする。
次のベクトル方程式はどのような図形を表すか。
(1) $|\vec{p}+2\vec{a}|=|\vec{p}-2\vec{a}|$
(2) $2\vec{a}\cdot\vec{p}=|\vec{a}||\vec{p}|$
【数C】【平面上のベクトル】ベクトル方程式6 ※問題文は概要欄

単元:
#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
平面上の$\triangle$ABCに対して,
条件$|\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}|=3$
を満たす動点Pはどのような図形を描くか。
この動画を見る
平面上の$\triangle$ABCに対して,
条件$|\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}|=3$
を満たす動点Pはどのような図形を描くか。
【数C】【平面上のベクトル】ベクトル方程式5 ※問題文は概要欄

単元:
#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\triangle$ABCの頂点A, B, Cの位置ベクトルを, それぞれ$\vec{a}$, $\vec{b}$, $\vec{c}$とする。
直線上の点をP($\vec{p}$)として, 次の直線のベクトル方程式を求めよ。
(1) Aから直線BCへの垂線$\qquad$
(2) Aと辺BCの中点を通る直線
この動画を見る
$\triangle$ABCの頂点A, B, Cの位置ベクトルを, それぞれ$\vec{a}$, $\vec{b}$, $\vec{c}$とする。
直線上の点をP($\vec{p}$)として, 次の直線のベクトル方程式を求めよ。
(1) Aから直線BCへの垂線$\qquad$
(2) Aと辺BCの中点を通る直線
【数C】【平面上のベクトル】ベクトル方程式4 ※問題文は概要欄

単元:
#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
A(-6, 2), B(3, -5)とする。線分ABの垂直二等分線の方程式を、ベクトルを利用して求めよ。
この動画を見る
A(-6, 2), B(3, -5)とする。線分ABの垂直二等分線の方程式を、ベクトルを利用して求めよ。
【数C】【平面上のベクトル】ベクトル方程式3 ※問題文は概要欄

単元:
#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
ベクトル$\left(-1,\sqrt{3}\right)$に垂直で,
原点Oからの距離が4である直線の方程式を求めよ。
この動画を見る
ベクトル$\left(-1,\sqrt{3}\right)$に垂直で,
原点Oからの距離が4である直線の方程式を求めよ。
【数C】【平面上のベクトル】ベクトル方程式2 ※問題文は概要欄

単元:
#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
O(0,0), A(2,0), B(1,2)に対して、
点Pが次の条件を満たしながら動くとき、
点Pの存在範囲を図示せよ。
(1) $\overrightarrow{OP}=s\overrightarrow{OA}+t\overrightarrow{OB}$, $0≦s≦1$, $1≦t≦3$
(2) $\overrightarrow{OP}=s\overrightarrow{OA}+t\overrightarrow{OB}$, $1≦s+t≦3$
(3) $\overrightarrow{OP}=s\overrightarrow{OA}+t\overrightarrow{OB}$, $0≦2s+3t≦6$, $s≧0$, $t≧0$
この動画を見る
O(0,0), A(2,0), B(1,2)に対して、
点Pが次の条件を満たしながら動くとき、
点Pの存在範囲を図示せよ。
(1) $\overrightarrow{OP}=s\overrightarrow{OA}+t\overrightarrow{OB}$, $0≦s≦1$, $1≦t≦3$
(2) $\overrightarrow{OP}=s\overrightarrow{OA}+t\overrightarrow{OB}$, $1≦s+t≦3$
(3) $\overrightarrow{OP}=s\overrightarrow{OA}+t\overrightarrow{OB}$, $0≦2s+3t≦6$, $s≧0$, $t≧0$
【数C】【平面上のベクトル】ベクトルの内積1 ※問題文は概要欄

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件を満たす2つのベクトル$\vec{ a }$ ,$\vec{ b }$のなす角θを求めよ。
(1) $| \vec{ a } |=2$ ,$|\vec{ b }|=1$ ,$|3\vec{ a }+2\vec{ b } |=2\sqrt{7}$
(2) $| \vec{ a } |=4$ ,$|2\vec{ a } -\vec{ b } |=7$ ,$(\vec{ a } +\vec{ b } )·(\vec{ b } -3\vec{ a } )=-43$
この動画を見る
次の条件を満たす2つのベクトル$\vec{ a }$ ,$\vec{ b }$のなす角θを求めよ。
(1) $| \vec{ a } |=2$ ,$|\vec{ b }|=1$ ,$|3\vec{ a }+2\vec{ b } |=2\sqrt{7}$
(2) $| \vec{ a } |=4$ ,$|2\vec{ a } -\vec{ b } |=7$ ,$(\vec{ a } +\vec{ b } )·(\vec{ b } -3\vec{ a } )=-43$
福田の数学〜東京科学大学(旧・東京工業大学)2025理系第2問〜ねじれの位置にある直線上の2点ずつでできる四面体の体積の最大最小

単元:
#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
空間の点$(0,0,1)$を通り
$(1,-1,0)$を方向ベクトルとする
直線を$\ell$とし、点$(1,0,3)$を通り$(0,1,-2)$を
方向ベクトルとする直線を$m$とする。
(1)$P$を$\ell$上の点とし、$Q$を$m$上の点とする。
また直線$PQ$は直線$\ell$と直線$m$に垂線であるとする。
このとき$P$と$Q$の座標、
および線分$PQ$の長さを求めよ。
(2)$\ell$上に$2$点
$A=(t,-t,1),$
$B(2+t+\sin t,-2-t-\sin t,1)$
があり、$m$上に$2$点
$C=(1,t,3,-2t),$
$D=(1,2+t<\cos t,-1-2t-2\cos t)$
があるとする。ただし、$y$は実数とする。
四面体$ABCD$の体積を$V(t)$とする。
$V(0)$を求めよ。
(3)$t$が$t\geqq 0$を動くとき、
$V(t)$の最大値と最小値を求めよ。
$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
この動画を見る
$\boxed{2}$
空間の点$(0,0,1)$を通り
$(1,-1,0)$を方向ベクトルとする
直線を$\ell$とし、点$(1,0,3)$を通り$(0,1,-2)$を
方向ベクトルとする直線を$m$とする。
(1)$P$を$\ell$上の点とし、$Q$を$m$上の点とする。
また直線$PQ$は直線$\ell$と直線$m$に垂線であるとする。
このとき$P$と$Q$の座標、
および線分$PQ$の長さを求めよ。
(2)$\ell$上に$2$点
$A=(t,-t,1),$
$B(2+t+\sin t,-2-t-\sin t,1)$
があり、$m$上に$2$点
$C=(1,t,3,-2t),$
$D=(1,2+t<\cos t,-1-2t-2\cos t)$
があるとする。ただし、$y$は実数とする。
四面体$ABCD$の体積を$V(t)$とする。
$V(0)$を求めよ。
(3)$t$が$t\geqq 0$を動くとき、
$V(t)$の最大値と最小値を求めよ。
$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
福田の数学〜一橋大学2025文系第4問〜ベクトル方程式と領域と角を2等分するベクトル

単元:
#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
原点を$O$とする座標空間内の
$2$点$A(0,3,-5),B(5,-2,10)$に対して
$\overrightarrow{OP}=s\left \{ (1-t)\overrightarrow{OA}+t\overrightarrow{OB} \right \},x\geqq 0,\dfrac{1}{5} \leqq t \leqq \dfrac{3}{5}$
で定まる点$P$が存在する範囲を$D$とする。
$D$に含まれる半径$10\sqrt2$の円のうち、
その中心と原点との距離が最小となるものを
$C$とする。
円$C$の中心の座標を求めよ。
$2025$年一橋大学文系過去問題
この動画を見る
$\boxed{4}$
原点を$O$とする座標空間内の
$2$点$A(0,3,-5),B(5,-2,10)$に対して
$\overrightarrow{OP}=s\left \{ (1-t)\overrightarrow{OA}+t\overrightarrow{OB} \right \},x\geqq 0,\dfrac{1}{5} \leqq t \leqq \dfrac{3}{5}$
で定まる点$P$が存在する範囲を$D$とする。
$D$に含まれる半径$10\sqrt2$の円のうち、
その中心と原点との距離が最小となるものを
$C$とする。
円$C$の中心の座標を求めよ。
$2025$年一橋大学文系過去問題
