平面上のベクトル

【数C】【平面上のベクトル】ベクトルを使った面積、内心 ※問題文は概要欄

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
問題1
次の3点を頂点とする三角形の面積 を求めよ。
(1)
(2)
(3)
問題2
において、 とする。 のとき、 の面積 を求めよ。
問題3
である の内心を とする。 とするとき、 を を用いて表せ。
問題4
三角形ABCの辺BC, CA, ABの中点をそれぞれA(1), B(1), C(1)とし、平面上の任意の点Oに対し、線分OA, OB, OCの中点をそれぞれA(2), B(2), C(2)とする。線分A(1)A(2), B(1)B(2),C(1)C(2)の中点は一致することを証明せよ。
この動画を見る
問題1
次の3点を頂点とする三角形の面積
(1)
(2)
(3)
問題2
問題3
問題4
三角形ABCの辺BC, CA, ABの中点をそれぞれA(1), B(1), C(1)とし、平面上の任意の点Oに対し、線分OA, OB, OCの中点をそれぞれA(2), B(2), C(2)とする。線分A(1)A(2), B(1)B(2),C(1)C(2)の中点は一致することを証明せよ。
【数C】【平面上のベクトル】ベクトル方程式1 ※問題文は概要欄

単元:
#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
問題1
の重心を 、辺 の中点を とし、 とする。
(1) 、 を を用いて表せ。
(2)点 を通り、辺 に平行な直線上の点を とし、 とする。この直線のベクトル方程式を、 を用いて求めよ。
問題2
2直線 について、次の問いに答えよ。ただし、 は媒介変数とする。
(1) と の交点の座標を求めよ。
(2)点 から に垂線 を下ろす。このとき、点 の座標を求めよ。
問題3
に対して、点 が次の条件を満たしながら動くとき、点 の存在範囲を図示せよ。
(1)
(2)
この動画を見る
問題1
(1)
(2)点
問題2
2直線
(1)
(2)点
問題3
(1)
(2)
【数C】【平面上のベクトル】ベクトルと図形3 ※問題文は概要欄

単元:
#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
問題1
において、 ,外心を とする。 とするとき、 を を用いて表せ。
問題2
平行四辺形 において、次の等式が成り立つことを証明せよ。
問題3
の辺 を1:2に内分する点を とする。このとき、等式 が成り立つことを証明せよ。
この動画を見る
問題1
問題2
平行四辺形
問題3
【数C】【平面上のベクトル】位置ベクトル ※問題文は概要欄

単元:
#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
問題1
の重心を とするとき、この平面上の任意の点 に対して、等式 が成り立つことを証明せよ。
問題2
と点 に対して、次の等式が成り立つとき、点 の位置をいえ。
(1)
(2)
(3)
問題3
と点 に対して、等式 が成り立っている。
(1)点 の位置をいえ。
(2) を求めよ。
この動画を見る
問題1
問題2
(1)
(2)
(3)
問題3
(1)点
(2)
【数C】【平面上のベクトル】ベクトルの成分5 ※問題文は概要欄

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
, のとし、 (tは実数)とする。
(1) のとき、tの値を求めよ。
(2) の最小値と、そのときのtの値を求めよ。
この動画を見る
(1)
(2)
【数C】【平面上のベクトル】ベクトルの成分4 ※問題文は概要欄

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
, のとき、 が に平行で、
かつ となるような を成分表示せよ。
この動画を見る
かつ
【数C】【平面上のベクトル】ベクトルの成分3 ※問題文は概要欄

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
, について、
と が
平行になるように、xの値を定めよ。
この動画を見る
平行になるように、xの値を定めよ。
【数C】【平面上のベクトル】ベクトルの成分2 ※問題文は概要欄

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
平行四辺形の3つの頂点が A(-2 ,2) ,B(1 ,- 3) ,C(3 ,0) のとき、第4の頂点Dの座標を求めよ。
この動画を見る
平行四辺形の3つの頂点が A(-2 ,2) ,B(1 ,- 3) ,C(3 ,0) のとき、第4の頂点Dの座標を求めよ。
【数C】【平面上のベクトル】ベクトルの成分1 ※問題文は概要欄

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
, とする。
等式 , を満たす , を成分表示せよ。
この動画を見る
等式
【数C】【平面上のベクトル】ベクトルの基本計算4 ※問題文は概要欄

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
四角形ABCDについて、次のことを証明せよ。
四角形ABCDが平行四辺形である ⇔
この動画を見る
四角形ABCDについて、次のことを証明せよ。
四角形ABCDが平行四辺形である ⇔
【数C】【平面上のベクトル】ベクトルの基本計算3 ※問題文は概要欄

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
平行四辺形ABCDの辺 , , , とするとき、 , を , を用いて表せ。
BCの中点をE、辺CD上の点でCF:FD=3:2 を満たす点をFとする。
この動画を見る
平行四辺形ABCDの辺
BCの中点をE、辺CD上の点でCF:FD=3:2 を満たす点をFとする。
【数C】【平面上のベクトル】ベクトルの基本計算2 ※問題文は概要欄

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1) , , であるとき、
であることを示せ。ただし、 , で、 と は平行でないとする。
(2) , , , である
とき、 であることを示せ。ただし、 , で、 と は平行でないとする。
この動画を見る
(1)
(2)
とき、
【数C】【平面上のベクトル】ベクトルの基本計算1 ※問題文は概要欄

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の等式を同時に満たすベクトル , を , を用いて表せ。
(1)
(2)
この動画を見る
次の等式を同時に満たすベクトル
(1)
(2)
【数C】【平面上のベクトル】ベクトルと図形2 ※問題文は概要欄

単元:
#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
問題1
において、辺 の中点を 辺 を に内分する点を 、辺 を に内分する点を 、線分 と線分 の交点を とする。また、 とする。
(1) を を用いて表せ。
(2)直線 と辺 の交点を とするとき、 を求めよ。
問題2
である長方形 がある。辺 を に内分する点を 、辺 を に内分する点を とするとき、 であることを証明せよ。
問題3
鋭角三角形 の外心を 、辺 の中点を とする。頂点 から辺 に垂線 を下ろし、線分 上に点 を となるようにとると、 は の垂心であることを証明せよ。
問題4
である において、頂点 から辺 に垂線 ,頂点 から辺 に垂線 を下ろす。線分 と線分 の交点を とするとき、 を を用いて表せ。
この動画を見る
問題1
(1)
(2)直線
問題2
問題3
鋭角三角形
問題4
【数C】【平面上のベクトル】ベクトルと図形1 ※問題文は概要欄

単元:
#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
問題1
の辺 , , を2:1に内分する点を、それぞれ , , とする。更に、 の辺 , を2:1に内分する点を、それぞれ , とする。このとき、 であることを示せ。
問題2
△ABCにおいて、辺BCを2:1に外分する点をP,辺ABを1:2に内分する点をQ、辺CAの中点をRとする。
(1)3点P,Q,Rは一直線上にあることを証明せよ。
(2)QR:QPを求めよ。
問題3
平行四辺形ABCDにおいて、辺ABを3:2に内分する点をP、対角線BDを2:5に内分する点をQとする。
(1)3点P,Q,Cは一直線上にあることを証明せよ。
(2)PQ:QCを求めよ。
問題4
△ABCにおいて、辺ABを1:2に内分する点をD、辺ACを3:1に内分する点をEとし、線分CD、BEの交点をPとする。 , とするとき、 を , を用いて表せ。
この動画を見る
問題1
問題2
△ABCにおいて、辺BCを2:1に外分する点をP,辺ABを1:2に内分する点をQ、辺CAの中点をRとする。
(1)3点P,Q,Rは一直線上にあることを証明せよ。
(2)QR:QPを求めよ。
問題3
平行四辺形ABCDにおいて、辺ABを3:2に内分する点をP、対角線BDを2:5に内分する点をQとする。
(1)3点P,Q,Cは一直線上にあることを証明せよ。
(2)PQ:QCを求めよ。
問題4
△ABCにおいて、辺ABを1:2に内分する点をD、辺ACを3:1に内分する点をEとし、線分CD、BEの交点をPとする。
大学入試問題#899「初めてのベクトルやってみた」 #北海道大学(2024)

単元:
#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師:
ますただ
問題文全文(内容文):
三角形 が
を満たしているとする。
三角形 の内接円の中心を とし、この内接円と辺 の接点を とする。
1.辺 の長さを求めよ。
2. を と を用いて表せ。
3. を と を用いて表せ。
出典:2024年北海道大学
この動画を見る
三角形
を満たしているとする。
三角形
1.辺
2.
3.
出典:2024年北海道大学
【高校数学】ベクトルにおける点の存在範囲のコツ【数学のコツ】

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
ベクトルにおける点の存在範囲のコツを解説していきます.
この動画を見る
ベクトルにおける点の存在範囲のコツを解説していきます.
【高校数学】ベクトルで表すときのコツ【数学のコツ】

【短時間でポイントチェック!!】ベクトルの内積〔現役講師解説、数学〕

福田の数学〜慶應義塾大学2024年商学部第2問(2)〜ベクトルの列とその絶対値の評価

単元:
#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#指数関数と対数関数#対数関数#数列#平面上のベクトルと内積#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B#数C
指導講師:
福田次郎
問題文全文(内容文):
(2)ベクトルの列 , , ..., , ...を条件
=(1,0), = , =
で定める。このとき = である。また、 < を満たす最小の自然数 は である。ただし、必要であれば、 =0.301を近似として用いてよい。
この動画を見る
で定める。このとき
福田の数学〜北海道大学2024年理系第4問〜三角形の内心の位置ベクトル

単元:
#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
三角形OABが、| |=3, | |=5, =10 を満たしているとする。
三角形OABの内接円の中心をIとし、この内接円と辺OAの接点をHとする。
(1)辺OBの長さを求めよ。
(2) を と を用いて表せ。
(3) を と を用いて表せ。
この動画を見る
三角形OABの内接円の中心をIとし、この内接円と辺OAの接点をHとする。
(1)辺OBの長さを求めよ。
(2)
(3)
福田の数学〜慶應義塾大学2024年看護医療学部第2問(1)〜正六角形の位置ベクトル

単元:
#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
(1)一辺の長さが2の正六角形ABCDEFにおいて、辺CDの中点をMとし、直線BEと直線AMの交点をPとする。このとき、 , , をそれぞれ , を用いて表すと = , = , = である。また、 と の内積 の値は である。
この動画を見る
福田の数学〜東京大学2018年理系第3問〜軌跡と領域そして極限

単元:
#大学入試過去問(数学)#平面上のベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#関数と極限#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
放物線 のうち を満たす部分をCとする。座標平面上の原点Oと点A(1,0)を考える。K>0を実数とする。点PがCの上を動き、天Qが線分OA上を動くとき を満たす点Rが動く領域の面積をS(k)とする。
S(k)および を求めよ。
2018東京大学理系過去問
この動画を見る
放物線
S(k)および
2018東京大学理系過去問
この公式の意味分かる?

2024年共通テスト徹底解説〜数学ⅡB第5問ベクトル〜福田の入試問題解説

単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト#数C
指導講師:
福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅡB第5問ベクトルを徹底解説します
この動画を見る
共通テスト2024の数学ⅡB第5問ベクトルを徹底解説します
福田の数学〜2点が動くときはどちらか一方を固定する〜東京大学2018年文系第4問〜平面ベクトルと点の動ける領域

単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
4 放物線 のうち をみたす部分を C とする。座標平面上の原点Oと点A(1,0)を考える。
( 1 )点 P が C 上を動くとき、 をみたす点 Q の軌跡を求めよ。
( 2 )点 P が C 上を動き、点 R が線分 OA 上を動くとき をみたす点 S が動く領域を座標平面上に図示し、その面積を求めよ。
2018東京大学文過去問
この動画を見る
4 放物線
( 1 )点 P が C 上を動くとき、
( 2 )点 P が C 上を動き、点 R が線分 OA 上を動くとき
2018東京大学文過去問
福田の数学〜3次方程式の解の存在範囲に関する問題〜東京大学2018年文系第3問〜関数の増減と方程式の解

単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
a>0とし、f(x)= とおく。
( 1 )x でf(x)が単調に増加するための aについての条件を求めよ。
( 2 )次の 2 条件を満たす点(a,b)の動きうる範囲を求め、座標平面上に図示せよ。
条件 1 :方程式f(x)=bは相異なる 3 実数解をもつ。
条件 2 :さらに方程式f(x)=bの解を とすると、 である。
2018東京大学文過去問
この動画を見る
a>0とし、f(x)=
( 1 )x
( 2 )次の 2 条件を満たす点(a,b)の動きうる範囲を求め、座標平面上に図示せよ。
条件 1 :方程式f(x)=bは相異なる 3 実数解をもつ。
条件 2 :さらに方程式f(x)=bの解を
2018東京大学文過去問
共通テストでめちゃ使えるベクトルの裏技(s, t問題)(公式)

単元:
#大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#センター試験・共通テスト関連#共通テスト#数学(高校生)#数C
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テストで使えるベクトルの裏技説明動画です(s, t問題)
この動画を見る
共通テストで使えるベクトルの裏技説明動画です(s, t問題)
杏林大学2023医学部第2問訂正動画

単元:
#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師:
福田次郎
問題文全文(内容文):
点 O を原点とする座標空間に 3 点 A(-I, 0 , ー 2 ), B(-2, ー 2 , ー 3 ), C(1, 2 , ー 2 )がある。
(a)ベクトル であり、 である。 の外接円の中心を点 P とすると、
が成り立つ。
(b) の重心を点 G とすると、 であり、線分OBを 2 : 1 に内分する点を Q とすると、 となる。
(c)線分 OC を 2 : I に内分する点を R とし、 3 点 A, Q, R を通る平面を と直線OG との交点を S とする。点 S は平面にあることから、
(ただし、 を満たす実数)
と書けるので、 となることがわかる。
平面 上において、点Sは三角形AQRの に存在し、四面体 O-AQR の体積は四面体のO-ABCの体積の 倍である。
2023杏林大学過去問
この動画を見る
点 O を原点とする座標空間に 3 点 A(-I, 0 , ー 2 ), B(-2, ー 2 , ー 3 ), C(1, 2 , ー 2 )がある。
(a)ベクトル
が成り立つ。
(b)
(c)線分 OC を 2 : I に内分する点を R とし、 3 点 A, Q, R を通る平面を
(ただし、
と書けるので、
平面
2023杏林大学過去問
福田の数学〜共通テスト対策にもバッチリ〜杏林大学2023年医学部第2問後編〜平面と直線の交点の位置ベクトルと体積

単元:
#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師:
福田次郎
問題文全文(内容文):
点 O を原点とする座標空間に 3 点 A(-1,0,-2), B(-2,-2, -3 ), C(1, 2,- 2 )がある。
(a)ベクトル であり、 である。 の外接円の中心を点 P とすると、
が成り立つ。
(b) の重心を点 G とすると、 であり、線分OBを 2 : 1 に内分する点を Q とすると、 となる。
(c)線分 OC を 2 : I に内分する点を R とし、 3 点 A, Q, R を通る平面を と直線OG との交点を S とする。点 S は平面にあることから、
(ただし、 を満たす実数)
と書けるので、 となることがわかる。
平面 上において、点Sは三角形AQRの に存在し、四面体 O-AQR の体積は四面体のO-ABCの体積の 倍である。
2023杏林大学過去問
この動画を見る
点 O を原点とする座標空間に 3 点 A(-1,0,-2), B(-2,-2, -3 ), C(1, 2,- 2 )がある。
(a)ベクトル
が成り立つ。
(b)
(c)線分 OC を 2 : I に内分する点を R とし、 3 点 A, Q, R を通る平面を
(ただし、
と書けるので、
平面
2023杏林大学過去問