中1数学 - 質問解決D.B.(データベース) - Page 21

中1数学

【高校受験対策】数学-関数42

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#1次関数#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数42

Q.
右下の図において、直線①、②はそれぞれ関数$y=\frac{1}{2}x$、$y=ax$のグラフであり、②は①を$y$軸の対称の軸として対称移動したものである。
直線③は、直線①上の点$A(4,2)$と$x$軸上の点$B(8,0)$を通る。
また点$P$は、原点$O$を出発して、直線①上を点$A$まで動く点であり、点$P$を通り$x$軸に平行な直線と直線②、③との交点をそれぞれ$C,D$とする。

①$a$の値を求めなさい。

②直線③の式を求めなさい。

③点$P$の$x$座標を$t$、$△ACD$の面積を$S$とするとき、$S$を$t$の式で表しなさい。

④$△APD$の面積が$△OPC$の面積の4倍となるとき、点$P$の座標を求めなさい。
この動画を見る 

【高校受験対策】数学-規則性7

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・規則性7

Q.
白い碁石と黒い碁石がたくさんある。
これらの碁石を、右下の図のように白、黒、黒、白、黒、黒・・・と白1個・黒1個の順で、
1段目には1個、2段目には2個、3段目には3個・・・を矢印の方向に規則的に置いていく。
このとき、次の問いに答えなさい。

①8段目に置かれている碁石のうち、白い碁石は全部で何個か。

②1段目から15段目までに置かれている碁石のうち、3列目に置かれている 白い碁石は全部で何個か。

③$n$段目から$(n+2)$段目までに置かれている碁石の個数は、白と黒を 合わせると全部でア個であり、
そのうち白い碁石の個数はイ個である。ア,イに当てはまる数をそれぞれのを使って表せ。

④$x$段目に置かれている碁石のうち、白い碁石の個数が全部で20個となるときの、$x$の値を全て求めよ。
この動画を見る 

【高校受験対策】数学-図形26

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形26
Q.
右の図は1辺の長さが8cmの正四面体$OABC$を表している。

①辺$OA,OB,OC$上にそれぞれ点$D,E,F$を、$OD:DA=1:2$、$OE:EB=1:2$、$OF:FC=1:2$
となるようにとる。
このとき正四面体$OABC$を3点$D,E,F$を通る平面で分けたときにできる2つの立体のうち
頂点$A$をふくむ立体の体積は正四面体$OABC$の体積の何倍か求めよ。

②$BC$の中点を$G$とし、辺$OA$上に、点$H$を$OH=GH$となるようにとる。
点$A$と点$G$を結び、点$H$から線分$AG$に垂線をひき、線分$AG$との 交点を$I$とする。
このとき線分$HI$の長さを求めよ。
この動画を見る 

【高校受験対策】数学-文章題6

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
2つの自然数$a$、$b$に対して、$a$を$b$で割ったときの商を$[a☆b]$、余りを$[a◎b]$で表すこととする。
ただし、商は0以上の整数とする。
例えば、20を3で割ると商が6、余りが2であるから、$[20☆3]=6$、$[20◎3]=2$となる。
また、 3を5で割ると商が0、余りが3であるから、$[3☆5]=0$、$[3◎5]=3$となる。
このとき次の間1~間4に答えなさい。

問1 次の(ア)、(イ)に入る数をそれぞれ書きなさい。
$[37☆7]=$(ア)、$[37◎7]=$(イ)

問2 $[a☆7]=7$を成り立たせる自然数は全部で何個あるか、求めなさい。

問3 $[a☆14]=3$・・①、$[a◎7]=3$・・➁とするとき、①、②をともに成り立たせる自然数$a$をすべて求めなさい。

問4 $[a◎3]=1$・・①、$[a◎4]=3$・・➁とするとき、①、②をともに成り立たせる自然数$a$のうち、2桁の自然数は全部で何個あるか求めなさい。
この動画を見る 

【高校受験対策】数学-図形24

アイキャッチ画像
単元: #数学(中学生)#中1数学#中3数学#空間図形#三平方の定理
指導講師: とある男が授業をしてみた
問題文全文(内容文):
問2
右の図の正四面体は、1辺の長さが8cmである。辺$BC$、$CD$の中点をそれぞれ点$P$、Q、 点$Q$から$AP$にひいた垂線と$AP$との交点を$R$とする。次の(1)~(4)に答えなさい。

(1) $AQ$の長さを求めなさい。

(2) $△APQ$の面積を求めなさい。

(3) $QR$の長さを求めなさい。

(4) 三角すい$RBCD$の体積は、正四面体$ABCD$の体積の何倍か、求めなさい
この動画を見る 

【1/5】中3冬特訓12日目【1/7終了】

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
Q.右の図のように、母線の長さOA=10cm、底面の直径AB=6cmの 円錐がある。

①円錐の体積を求めよ。

②円錐の表面積を求めよ。

③右の図のように、円錐の側面を平面上に置き、頂点を$o$中心として、すべらないように転がす。
このとき、円錐がもとの位置にもどるのは何回転したときか求めよ。
この動画を見る 

【高校受験対策】数学-死守35

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#1次関数#平行と合同#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守35

①$6a \div -(\frac{3}{2})$

➁$9-(-15)\div3$

③$\sqrt{54}+4\sqrt{6}$

④$4x^2 \times -\frac{5}{6}xy$

⑤$\sqrt{18}-\frac{4}{\sqrt{2}}$


$2x+5y=3$
$x-3y=7$

⑦$x=19$のとき、$x^2-10x+9$の値を求めなさい。

⑧2次方程式$x^2+3x-0$を解きなさい

⑨直線$y=-x+7$に平行で、点$(4,-1)$を通る直線の式を求めなさい。

⑩右の図のような五角柱ABCDEFGHIJにおいて、 辺AFとねじれの位置にある辺の数を求めなさい。

⑪半径が$6cm$、中心角が$40°$のおうぎ形の面積を求めなさい。 ただし円周率は$\pi$とする。

⑫$8\leqq \sqrt{n} \leqq9$にあてはまる自然数$n$は、全部で何個あるか求めなさい。


袋の中に赤玉が3個、白玉が2個入っています。
この袋の中から2個の玉を同時に取り出すとき、取り出した2個の玉が同じ色である確率を求めなさい。ただし、どの玉の取り出し方も同様に確からしいものとします。


底面の半径が$4cm$で、表面積が$84\pi cm^2$の円柱がある。
この円柱の体積を求めなさい。ただし円周率は$\pi$とする。
この動画を見る 

【高校受験対策】数学-死守34

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守34

①$(-8)+(-4)$

②$-\frac{5}{7}+\frac{2}{3}$

③$65a^2b \div5a$

④$\frac{18}{\sqrt{2}}-\sqrt{98}$

⑤$(x+9)^2-(x-3)(x-7)$

⑥$(x+4)^2-2(x+4)-24$を因数分解しなさい。

⑦2次方程式$6x^2-2x-1=0$を解きなさい。

⑧関数$y=ax^2$について、$x$の値が$2$から$5$まで増加するときの変化の割合が$ー4$であった。このときの$a$の値を求めなさい。

④1本$a$円のえんぴつを9本と1個100円の消しゴムを1個買って1000円を支払い、おつりを受け取った。
このときの数量の関係を不等式で表しなさい。ただし、右辺は1000だけとする。

⑩$\sqrt{53-2n}$が整数となるような正の整数$n$をすべて書きなさい。


Aさんの家からバス停までの道のりは$a$km、バス停から駅までの道のりは$b$kmである。Aさんが、Aさんの家からバス停までは時速4kmで歩き、バス停から駅までは時速30kmで走るバスに乗ったところ、 Aさんの家から駅まで$t$時間かかった。
このとき、$t$を$a$と$b$を使った式で表しなさい。 ただし、バス停でバスを待つ時間は考えないものとする。



右の度数分布表は、あるクラスの生徒20人のハンドボール投げの記録をまとめたものである。この度数分布表から求められる記録の平均値を求めなさい。
この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察4(受験編)

アイキャッチ画像
単元: #中1数学#方程式#数Ⅱ#数と式#式と証明#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}\ n$個の変数の相加・相乗平均の関係を証明せよ。
つまり、$n$個の正の数$\ a_1,a_2,\cdots,a_n$に対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} \geqq \sqrt[n]{a_1a_2\cdots a_n}$
この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察3(受験編)

アイキャッチ画像
単元: #中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#式と証明#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$ を既知として、$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$ を証明せよ。
ただし、a,b,c,dは全て正の数であるとする。

${\Large\boxed{2}}\ \boxed{1}$を利用して、n個の変数の相加・相乗平均の関係を証明せよ。
つまり、n個の正の数\ a_1,a_2,\cdot,a_nに対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} \geqq \sqrt[n]{a_1a_2\cdots a_n}$
この動画を見る 

球の体積、表面積 中学生にも納得のいく方法で。 積分でも出します

アイキャッチ画像
単元: #数学(中学生)#中1数学#数Ⅱ#空間図形#微分法と積分法#面積、体積#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
球の表面積、体積の公式がなぜそうなるのかわかりやすく解説します!
この動画を見る 

【受験対策】数学-資料の活用③

アイキャッチ画像
単元: #数学(中学生)#中1数学#資料の活用
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎ある年の7月に、野球チームA、Bがそれぞれ試合を行った。
右の図は、Aチームが行った全試合におけるそれぞれの得点の記録をヒストグラムに表したものである。
また、表は、Bチームが行った全試合におけるそれぞれの得点の記録を度数分布表にまとめたものであり、Bチームが行った全試合の得点の合計は108点である。
このとき、①~③に答えよう。

①図における中央値を求めよう。

②表の中の(i),(ii)にあてはまる数を求めよう。

③図、表からわかることとして正しいものを次の㋐~㋔の中から2つ選ぼう。

㋐Aチームの試合数はBチームの試合数より多く、Aチームの全試合の得点の合計はBチームの全試合の得点の合計より多い。

㋑Aチームの得点の最頻値はAチームの得点の平均値と等しいが、Bチームの得点の最頻値はBチームの得点の平均値と異なる。

㋒Aチームの得点の範囲はBチームの得点の範囲より大きく、Aチームが10点以上得点した試合数はBチームが10点以上得点した試合数より多い。

㋓Aチームの得点の平均値はBチームの得点の平均値より大きく、Aチームの得点の最頻値はBチームの得点の最頻値より小さい。

㋔Aチームの得点は、Aチームの試合の半数以上でAチームの得点の平均値以上である。

※図/表は動画内参照
この動画を見る 

【受験対策】数学-資料の活用②

アイキャッチ画像
単元: #数学(中学生)#中1数学#資料の活用
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎生徒数40人のクラスで、1ヶ月間に1人1人が読んだ本の冊数を調べた。
図Aは、その結果をヒストグラムに表したものである。
このとき、次の①、②に答えよう。

①読んだ本の冊数が8冊以上の生徒は、クラス全体の何%か、求めよう。

②読んだ本の冊数の中央値を求めよう。

③図Bは、あるクラスの生徒20人が冬休み中に読んだ本の冊数を、ヒストグラムに表したものである。
この20人が読んだ本の冊数について述べた文として適切なものを、次の㋐~㋓のうちから1つ選ぼう。

㋐分布の範囲(レンジ)は、4冊である。

㋑最頻値(モード)は、5冊である。

㋒中央値(メジアン)は、3冊である。

㋓平均値は、2.3冊である。

※図は動画内参照
この動画を見る 

【受験対策】数学-資料の活用①

アイキャッチ画像
単元: #数学(中学生)#中1数学#資料の活用
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①資料Aは、ある中学校の3年生男子11名が行った反復横跳びの回数を記録したものである。
中央値を求めよう。

②表Bは、あるサッカーチームが行った試合の得点の記録をまとめたものである。この表から試合の得点の最頻値と平均値を求めよう。

③表Cは、あるクラスの生徒33人に対して50m走を実施し、その記録を度数分布表 にまとめたものである。度数が最も多い階級の階級値を求めよう。

※資料/表は動画内参照
この動画を見る 

【受験対策】 数学-小問①

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の計算をしよう。

①$-5-8 \times \displaystyle \frac{1}{4}$

②$-3+5 \times (-1)^3$

③$4(2x-y)-3(x+y)$

④$\displaystyle \frac{1}{2}(3a-2b)-(2a-b)$

⑤一次方程式$x-7=9(x+1)$を解こう。

⑥等式$2a-3b=1$を$b$について解こう。

⑦等式$a=\displaystyle \frac{b+c}{2}$をcについて解こう。
この動画を見る 

中学数学(方程式・高校入試対策)【篠原好】

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
受験生向け中学数学の「方程式」と「高校入試対策」についての説明です。
この動画を見る 

【受験対策】  数学-図形③

アイキャッチ画像
単元: #数学(中学生)#中1数学#中3数学#相似な図形#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図で、△ABC,△BDEはどちらも正三角形で辺AC上に頂点Dがあります。
AB:AE=5:3のとき、次の問いに答えよう。

①$\angle ABE=54°$のとき、$\angle BDC$の大きさは?

②AD:CDを、最も簡単な整数の比で求めよう。

③△ABDの面積は四角形EBCAの面積の何倍?
※図は動画内参照
この動画を見る 

【受験対策】  数学-図形②

アイキャッチ画像
単元: #数学(中学生)#中1数学#中3数学#相似な図形#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①右の[図1]のような図形を組み立てて、三角柱の形をした容器をつくりました。
この容器を立てて、中に48$cm^3$の水を入れたとき、水が容器にふれている部分の面積を 求めよう。
ただし、容器の厚みは考えないものとし、水がこぼれることもないものとします。

② 右の[図2]のように、円周上に点A、B、C、Dがあります。
ACとBDの交点をEとし、直線ABと直線CDの交点をF とします。
$\angle BAC=27°\angle AED=87°$のとき、 $\angle AFD$の大きさを求めよう。

③右の[図3]で、△ABCはAB=ACの二等辺三角形です。
辺BC上に点Dをとり、ADを折り目として折り返し、
頂点Bが移った位置をEとします。
辺BCとAEの交点をFと すると、FD=FEになりました。
$\angle BAD=42°$のとき、 $\angle ACB$の大きさを求めよう。
※図は動画内参照
この動画を見る 

【受験対策】  数学-関数④

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#比例・反比例#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のように、関数$y=\displaystyle \frac{24}{x}$とそのグラフ上の点Aがある。
直線又は点Aを通る傾きが3の直線で、 関数$y=\displaystyle \frac{24}{x}$とのもう一つの交点をBとします。
点Aのx座標が2のとき、次の問いに答えよう。

①点Aの座標は?

②点Bの座標は?

③△OABの面積は?
※図は動画内参照
この動画を見る 

【中1 数学】中1-78 おうぎ形の弧と面積④ ~さらにややこしい図形編~

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎色のついている部分の面積と周の長さをもとめよう!

[面]
[周]


ACを直径とする半径は、ABを直径とする
半円を点Aを中心に30°回転させたもの。

[面]
[周]
※図は動画内参照
この動画を見る 

【中1 数学】中1-77 おうぎ形の弧と面積③ ~ややこしい図形編~

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎色のついている部分の面積と周の長さをもとめよう!

[面]
[周]


[面]
[周]
※図は動画内参照
この動画を見る 

(撮り直し前)【中1 数学】  中1-76  おうぎ形の弧と面積② ・ 応用編

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①半径9cm、面積36π$cm^2$のおうぎ形の中心角の大きさと弧の長さをもとめよう!

②半径6cm、弧の長さ9πcmのおうぎ形の中心角の大きさと面積をもとめよう!
この動画を見る 

【中1 数学】中1-75 おうぎ形の弧と面積① ~基本編~

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
[円]
面積=①________
円周=②________

[おうぎ形]
面積=③________
弧=④________

◎半径12cm、中心角60°のおうぎ形について。
⑤面積は?
⑥弧の長さは?

◎半径5cm、中心角144°のおうぎ形について。
⑦面積は?
⑧弧の長さは?
この動画を見る 

【中1 数学】中1-74 円とおうぎ形の性質③ ~おうぎ形編~

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のOABを①____といい、
$\angle AOB$を②____という。

◎おうぎ形OABの面積が$5πcm^2$。

③おうぎ形OCDの面積は?

④おうぎ形OEFの面積は?

⑤右の円で、面積が$25πcm^2$のおうぎ形を作図するには
中心角を何度にすればいい?
※図は動画内参照
この動画を見る 

【中1 数学】中1-73 円とおうぎ形の性質② ~作図編~

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①点Aが接点となるように接線ℓを作図しよう!

②中心が直線m上にあって点Aで直線ℓに接する円を作図しよう!

③割れた円形の皿の中心Oを作図しよう!

④点Aで直線OYに接して、かつ直線OXにも接する円を作図しよう!
※図は動画内参照
この動画を見る 

【中1 数学】中1-72 円とおうぎ形の性質① ~基本編~

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\boxed{Ⅰ}$の図で、線分ABを①____、円周のAからBまでの部分を②____といい、③____とかく。
また、$\angle AOB$を③‗‗‗‗‗‗に対する④____といい、
線分ABが直径なら、④‗‗‗‗‗‗は⑤____になる。

$\boxed{Ⅱ}$の図のように、円と直線が1点で交わるとき、直線は円に⑥____という。
そして、このときの点Cを⑦____、直線ℓを⑧____といい、OCはℓに⑨____になる!
※図は動画内参照
この動画を見る 

【中1 数学】中1-71 作図③ ~さらに応用編~

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①長方形ABCDにおいて、頂点Bが頂点Dに重なるように折るとき、折り目の線分を作図しよう!

②2点A,Bから等しい距離にあり、かつ点Cに最も近い点Pを作図しよう!

③$\angle AOC$の二等分線OPと$\angle BOC$の二等分線OQを作図しよう!

④③のように作図したとき$\angle POQ$は何度?
※図は動画内参照
この動画を見る 

【中1 数学】中1-70 作図② ~応用編~

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①△ABCにおいて、辺ABの中点を作図しよう!

②△ABCにおいて、辺BCを底辺としたときの高さAHを作図しよう!

③直線ℓ上にあって、2点A,Bから等しい距離にある点Pを作図しよう!

④正三角形ABCにおいて、
$\angle ABD=15°$となる直線BDを作図しよう!
※図は動画内参照
この動画を見る 

【中1 数学】中1-69 作図① ~基本編~

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎それぞれの作図をして、効果を書こう!
$\boxed{1}$垂直二等分線



【効果】
作図した線分ABと②____になるし、その交点は線分ABの③____になる。
つまり、2点A,Bから④____にあるってこと!

$\boxed{2}$角の二等分線


【効果】
その角を⑥____にする。
OX,OYから、⑦____にある!

$\boxed{3}$点Pを通る垂線(2種類)




【効果】
⑩____を通る⑪____な線が書ける。
また、距離が⑩________線を書くときに使う!
※図は動画内参照
この動画を見る 

【中1 数学】中1-68 図形の移動③ ~作図編~

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①△ABCの点Aを点Pに移すように平行移動させよう!

②△DEFを直線ℓを対称軸として対称移動させよう!

③△GHIを点Oを回転の中心として点対称移動させよう!
※図は動画内参照
この動画を見る 
PAGE TOP