連立方程式 - 質問解決D.B.(データベース) - Page 8

連立方程式

連立方程式:東京工業大学附属科学技術高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#東京工業大学附属科学技術高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 東京工業大学附属科学技術高等学校

$x$と$y$の値をそれぞれ求めなさい。
$x:y=3:2$が成り立ち
$x + y = 4$である。
この動画を見る 

【高校受験対策/数学】文章題8

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・文章題8

Q.
ある博物館の入館料は、小学生260円、中学生と高校生はともに410円、大人760円である。
ある日の入館者数を調べると、中学生と高校生の合計入館者数は小学生の入館者数の2倍であり、
大人の入館者数は小学生、中学生、高校生の合計入館者数よりも100人少なかった。
この日の小学生の入館者数を$x$人、大人の入館者数を$y$人とするとき、次の問いに答えよ。

①この日の総入館者数を$x$と$y$の両方を用いて表せ。

②さらに、この博物館では1個550円のおみやげを売っており、総入館者数の8割の人が購入した。
この日の総入館者の入館料の合計とおみやげの売上げをあわせた金額は150000円で、おみやげを2個以上買った人はいなかった。
このとき$x$と$y$の値をそれぞれ求めよ。
この動画を見る 

【中学数学】連立方程式の演習~愛媛県公立高校入試2019~【高校受験】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
花子さんが住む市の1ヵ月の水道料金は、使用量が8m³までは基本料金のみであり、
使用量が8㎡を超えると、超えた使用量に対して1m³当たりいくらかの超過料金が
発生する。
今月から水道料金が値上げされ、先月に比べて、基本料金が20%、1㎡当たりの
超過料金が15円、それぞれ高くなった。
花子さんの家の使用量は先月も今月も25m³であった。
先月の水道料金は4260円であり、今月の水道料金は先月の水道料金と比べると
495円高くなった。
先月の基本料金と、先月の1m³当たりの超過料金をそれぞれ求めよ。
この動画を見る 

【高校受験対策/数学】死守61

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#平方根#1次関数#2次関数#文字と式#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守6

①$-5+2$を計算しなさい。

➁$6 \times \frac{2a+1}{3}$を計算しなさい。

③$(\sqrt{7}-1)(\sqrt{7}+1)$を計算しなさい。

④連立方程式を解きなさい。
$y=x+6$
$y=-2x+3$

⑤2次方程式$x^2-3x-2=0$を解きなさい。

⑥1辺の長さが$x$ cmの正方形が あります。
この正方形の周の長さを$y$ cmとするとき、$y$を$x$の式で表しなさい。

⑦34人の団体Xと40人の団体Yが博物館に行きます。
この博物館の1人分の入館料は$a$円で、40人以上の団体の入館料は20%引きになります。
このとき、団体Xと団体Yでは入館料の合計はどちらが多くかかりますか。
その理由をことばや式を用いて書きなさい。ただし消費税は考えないものとする。

⑧右の図で、3点、A、B、Cは円$o$の周上にあります。 このとき$\angle x$の大きさを求めなさい。

⑨右下の図のような長方形ABCDの紙を、 頂点Aが頂点Cに重なるように折ったときの折り目の線分を作図によって求めなさい。
ただし、作図には定規とコンパスを用い作図に使った線は消さないでおくこと。
この動画を見る 

【エナドリ!】連立方程式:久留米大学附設高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#久留米大学附設高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 久留米大学附設高等学校

次の問いに答えよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
\displaystyle \frac{1}{2x-3y}+\displaystyle \frac{2}{x+2y}=3 \\
\displaystyle \frac{3}{2x-3y}+\displaystyle \frac{2}{x+2y}=5
\end{array}
\right.
\end{eqnarray}$
連立方程式を解け。
この動画を見る 

【キミのやり方であっている!】連立方程式:関西学院高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#関西学院高等部
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 関西学院高等学校

連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
3(\displaystyle \frac{ 5 }{6}x+\displaystyle \frac{ 14 }{3})-5(\displaystyle \frac{ 1 }{3}y-\displaystyle \frac{ 14 }{5})=33 \\
2(\displaystyle \frac{ 5 }{6}x+\displaystyle \frac{ 14 }{3})-5(\displaystyle \frac{ 1 4}{5}-\displaystyle \frac{ 1 }{3}y)=-3
\end{array}
\right.
\end{eqnarray}$
を解け。
この動画を見る 

【ルーチン】連立方程式の解き方《後編》~【行列のできる】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
【ルーチン】連立方程式の解き方《後編》

$\begin{eqnarray}
\left\{
\begin{array}{l}
ax + by = l \\
cx + dy = m
\end{array}
\right.
\end{eqnarray}$

$ \iff $ $ \begin{pmatrix}
a & b \\
c & d
\end{pmatrix} $$\dbinom{ x }{ y }=\dbinom{ l }{ m }$
この動画を見る 

【ルーチン】連立方程式の解き方《前編》~【行列のできる】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
【ルーチン】連立方程式の解き方《前編》

$ \begin{eqnarray}
\left\{
\begin{array}{l}
ax + by+cz = l \\
dx + ey +fz= m \\
gx + hy +i3z= n

\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【中学数学】連立方程式の文章題基礎~受験問題で演習~ 2-3【中2数学】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
ある店では、チョコレート1個54円、あめが1個81円で売られている。
また、1個の重さは、チョコレートが20g、あめが12gである。
このチョコレートとあめをそれぞれ何個か買ったところ、代金は全部で432円、
全体の重さは124gであった。
チョコレートとあめをそれぞれ何個買ったか求めよ。

2⃣
ある中学校でボランティア活動に参加したことがある生徒は、1年生では1年生
全体の25%、2年生では2年生全体の30%、3年生では3年生全体の40%で、学校全体
では生徒全体の32%である。
また、この中学校の生徒数は、3年生は2年生より15人多く、1年生は240人である。
この中学校の2年生と3年生の生徒数を求めよ。

3⃣
2けたの自然数がある。
この自然数の十の位の数と一の位の数の和は、一の位の数の4倍よりも8小さい。
また、十の位の数と一の位の数を入れかえてできる2けたの自然数と、もとの
自然数との和は132である。もとの自然数を求めよ。
この動画を見る 

【その本質を調べることも数学】連立方程式:滋賀県高校入試~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#滋賀県公立高校入試
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 滋賀県の高校

次の問いに答えよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x - 3y = 1 \\
3x + 2y = 8
\end{array}
\right.
\end{eqnarray}$
連立方程式を解きなさい。
この動画を見る 

【高校受験対策/数学】死守60

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#空間図形#1次関数#平行と合同#確率#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守605-41

①$-5-(-7)$を計算しなさい。

➁$(\frac{1}{4}-\frac{2}{3})\times 12$を計算しなさい。

③$4x \times\frac{2}{5}xy \div 2x^2$を計算しなさい。

④$(-2a+3)(2a+3)+9$を計算しなさい。

⑤$\sqrt{24} \div \sqrt{8}-\sqrt{12}$を計算しなさい。

⑥$150$を素因数分解しなさい。

⑦次の連立方程式を解きなさい。
$y=4(x+2)$
$6x-y=-10$

⑧次の数量の関係を等式で表しなさい。
100円硬貨が$a$ 枚、50円硬貨が$b$ 枚あり、これらをすべて10円硬貨に両替すると$c$ 枚になる。

⑨箱の中に同じ大きさの白玉がたくさん入っている。
そこに同じ大きさの黒玉100個入れてよくかき混ぜた後、その中から34個の玉を無作為に取りだしたところ、黒玉が4個入っていた。
この結果から、箱の中にはおよそ何個の白玉が入っていると考えられるか求めなさい。

➉半径6cmの球を中心$o$を通る平面で切った半球の表面積を求めなさい。

⑪右の図で$l /\!/ m$、$AB=AC$のとき、$\angle x$ の大きさを求めなさい。
この動画を見る 

【数学はパズルだ!】連立方程式:愛知県高校入試~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 愛知県の高校

図の○の中に入る数
各辺の3つの和がすべて等しくなる。
ア、イにあてはまる数を求めなさい。
この動画を見る 

連立方程式解法~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
連立方程式解法~全国入試問題解法

次の連立方程式を解け。
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x + 2y + z = 3 \\
3x + y + 4z= 5 \\
2x+y+3z=4
\end{array}
\right.
\end{eqnarray}$
※高校入試では出ませんので、 念のため・・・。
この動画を見る 

【現実は厳しい?】連立方程式:早稲田大学系属早稲田実業学校高等部~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#早稲田大学系属早稲田実業学校高等部
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 早稲田大学系属早稲田実業学校高等部

$\begin{eqnarray}
\left\{
\begin{array}{l}
Ax + By = 12 ・・・(ァ)\\
Bx-Ay = 16 ・・・(イ)\\
6x-8y=C  ・・・(ウ)\\
Dx-6y=E ・・・(エ) \\
\end{array}
\right.
\end{eqnarray}$

条件Ⅰ:アとウを連立→解なし。
条件Ⅱ:アとエを連立→解:$x=8,y=9$
条件Ⅲ:「ウとエを連立した解」
   →「アとイを連立した解」
よりの値は$6$大きく、$y$の値は$2$大きい。
①$A,B$の値をそれぞれ求めよ。
②$C.E$の値をそれぞれ求めよ。
この動画を見る 

連立方程式:立命館高校入試~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#立命館高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 立命館高等学校

次の連立方程式を解きなさい。
$\displaystyle \frac{x+3y}{2}=\displaystyle \frac{2x+6y+2}{3}=-\displaystyle \frac{2}{5}(4x+5y)$
この動画を見る 

【高校受験対策/数学】死守58

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式#比例・反比例#空間図形#1次関数#文字と式#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守58 @397

①$5-8$を計算せよ

②$-4 \times(-3)^2$を計算せよ。

③$(4a^2b+6ab^2)\div 2ab$を計算せよ。

④$(x+y)^2-5xy$を計算せよ。

⑤絶対値が$4$より小さい整数は何個あるか。

⑥2次方程式$x^2+5x+2=0$を解け。

⑦$y$が$x$に反比例し、$x$と$y$の値が下の表のように対応しているとき、表のAに当てはまる数を求めよ。

⑧図1は円すいの展開図で、底面の半径は$5cm$、側面のおうぎ形の半径は$12cm$である。
$\angle x$の大きさを求めなさい。

⑨一の位の数が0でない、2桁の自然数Aがある。
Aの十の位の数とーの位の数を入れかえてできる数をBとする。
Aの十の位の数は一の位の数の2倍であり、BはAより36小さい。このときAの値を求めよ。

⑩右の表はある市における、7月の日ごとの最高気温を度数分布表にまとめたものである。
この表から読み取ることができることがらとして適切なものを、次のア~オからすべて選べ。

ア $32.0℃$以上$34.0℃$未満の階緑の相対度数は$0.16$よりきい。
イ 階級の幅は$12.0℃$である。
ウ 最高気温が$28.0℃$以上の日は、$5$日である。
エ 最頻値(モード)は、$27.0℃$である。
オ $30.0℃$以上$32.0℃$未満の階級の階級値は、$30.0℃$である。
この動画を見る 

連立方程式はもっと楽に解こうよ

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
連立方程式を簡単に解く方法に関して解説していきます.
この動画を見る 

【高校受験対策/数学】死守57

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守57

①$6\times (-3)$を計算しなさい。

②$9-(-4)^2 \times \frac{5}{8}$を計算しなさい。

③$a^2b×21b \div 7a$を計算しなさい。

④連立方程式
$0.2x+1.5y=4$
$x-3y=-1$を解きなさい。

⑤$\frac{12}{\sqrt{3}}-3\sqrt{6} \times \sqrt{8}$を計算しなさい。

⑥二次方程式$x^2+5x+5=0$を解きなさい。

⑦ある美術館の入館料は、おとな1人が$a$円、中学生1人が$b$円である。
このとき、不等式$2a+3b \gt 2000$が表している数量の関係として最も適当なものを、次のア~エのうちから1つ選び、符号で答えなさい。

ア おとな2人と中学生3人の入館料の合計は、2000円より安い。
イ おとな2人と中学生3人の入館料の合計は、2000円より高い。
ウ おとな2人と中学生3人の入館料の合計は、2000円以下である。
エ おとな2人と中学生3人の入館料の合計は、2000円以上である。

⑧-5、-2、-1、3、6、10の整数が1つずつ書かれた6枚のカードがある。
この6枚のカードをよくきって、同時に2枚ひく。
このとき、ひいた2枚のカードに書かれた数の平均値が、自然数になる確率を求めなさい。
ただし、どのカードをひくことも同様に確からしいものとする。
この動画を見る 

【高校受験対策/数学】死守55

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#2次関数#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守55

①$(-3)^2+2 \times (-5)$を計算しなさい。

②$\frac{4x-3}{2}\times\frac{6x-7}{5}$を計算しなさい。

③$(-4xy)^2×(-3x)$を計算しなさい。

④連立方程式を解きなさい。
$4x-3y=-7$
$5x+9y=-13$

⑤$5\sqrt{6}+2\sqrt{24}-\frac{6\sqrt{3}}{\sqrt{2}}$を計算しなさい。

⑥二次方程式$(x+4)(x-6)=6x-39$を解きなさい。

②関数$y=ax^2$について、$x$の値が$-5$から$-3$まで増加したときの変化の割合が$2$であるとき、$a$の値を求めなさい。

⑧底面の半径が$5$ cm、高さが$6$ cmの円すいの体積を求めなさい。 ただし円周率は$\pi$とする。

⑨右の図1のように、三角形$ABC$の$\angle B$の二等分線と$\angle C$の外角$\angle ACD$の二等分線の交点を$E$とする。
$\angle BAC$の大きさが$40°$のとき、$\angle BEC$の大きさを求めなさい。

⑩右の図2で、$\angle APB=120°$のひし形$AQBP$を1つ、 定規とコンパスを用いて作図しなさい。 なお作図に用いた線は消さずに残して おきなさい。
この動画を見る 

【高校受験対策/数学】死守53

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守53

①$2-(-9)$を計算せよ。

②$52a^2b \div (-4a)$を計算せよ。

③$\sqrt{28}+\frac{49}{\sqrt{7}}$を計算せよ。

④$\frac{3x-y}{3}-\frac{x-2y}{4}$を計算せよ。

⑤$(\sqrt{2}+1)^2-5({\sqrt{2}+1)}+4$を計算せよ。

⑥2次方程式$x^2-5x-3=0$を解きなさい。

⑦関数$y=-\frac{1}{3}x^2$について、$x$の値が$3$から$6$まで増加するときの変化の割合を求めなさい。

⑧連立方程式
$ax+by=10$
$bx-ay=5$
の解が$x=2$、$y=1$であるとき$a$、$b$の値を求めなさい。

⑨ある動物園では、大人1人の入園料が子ども1人の入園料より600円高い。
大人1人の入園料と子ども 1人の入園料の比が$5:2$であるとき、子ども1人の入園料を求めなさい。

⑩$\frac{5880}{n}$が自然数の平方となるような、最も小さい自然数$n$の値を求めなさい。
この動画を見る 

連立方程式が4つの解を持つ条件

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2+y^2-4(a+1)x-2ay+5a^2+
 8a+3=0 \\
x^2=y^2
\end{array}
\right.
\end{eqnarray}$
が4つの解をもつ$a$を求めよ.
この動画を見る 

【高校受験対策/数学】死守52

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守52

①$8+3\times(-2)$を計算しなさい。

➁$9a+1-2(3a-2)$を計算しなさい。

③$8x^2y \times(-6xy)$を計算しなさい。

④$\frac{9}{\sqrt{3}}+\sqrt{12}$を計算しなさい。

⑤二次方程式$x^2+x-6=0$を解きなさい。

⑥1本$a$円の鉛筆3本と1冊$b$円のノート 5冊の代金の合計は500円より高い。
これらの数量の関係を不等式で表しなさい。

⑦右の図は三角柱ABCDEFである。
辺ABとねじれの位置にある辺は何本あるか答えなさい。

⑧右の図のような$△ABC$がある。
3つの頂点、$A$、$B$、$C$ から等しい距離にある点$P$を作図によって求め、$P$の記号をつけなさい。
ただし、作図に用いた線は残しておくこと。

⑨A中学校の生徒数は、男女あわせて365人である。
そのうち男子の80%と女子の60%が運動部に所属しており、その人数は257人であった。
このとき、A中学校の男子の生徒数と女子の生徒数をそれぞれ求めなさい。

⑩箱の中に1、2、3、4の数が1つずつ書かれた同じ大きさの玉が1個ずつ入っている。
中を見ないでこの箱から同時に2個の玉を取り出すとき、取り出した玉の数の和が5以下となる確率を求めなさい。

この動画を見る 

ゆく年くる年連立方程式 ちょっと外積

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
2019x+2020y=66 \\
1009x+1011y=33
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る 

息抜き ゆく年くる年連立方程式

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
2019x+2020y=4055 \\
2020x+2019y=4023
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る 

【高校受験対策】数学-規則性6

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
図1のような、縦$acm$、横$bcm$の長方形の紙がある。
この長方形の紙に対して次のような【操作】を行う。ただし$a$、$b$は正の整数であり、$a \lt b$とする。

【操作】
長方形の紙から短い方の辺を1辺とする正方形を切り取る。
残った四角形が正方形でない場合には、その四角形からさらに同様の方法で正方形を切り取り、残った四角形が正方形になるまで繰り返す。

例えば、図2のように、$a$=3、$ b$=4の長方形の紙に対して【操作】を行うと、1辺3cmの正方形の紙が1枚、1辺1cmの正方形の紙が3枚、全部で4枚の正方形ができる。
このとき次の問1、間2、間3、間4に答えなさい。


問1
$a$=4、$b$=6の長方形の紙に対して【操作】を行ったとき、できた正方形のうち最も小さい正方形の 1辺の長さを求めなさい。

問2
$n$を正の整数とする。$a=n$、$b=3n+1$の長方形の紙に対して【操作】を行ったとき、正方形は全部で何枚できるか。$n$を用いて表しなさい。

問3
ある長方形の紙に対して【操作】を行ったところ、3種類の大きさの異なる正方形が全部で4枚できた。
これらの正方形は、1辺の長さが長い順に、12cmの正方形が1枚、$x$cmの正方形が1枚、$y$cmの正方形が2枚であった。
このとき、$x$、$y$の連立方程式をつくり、$x$、$y$の値を求めなさい。ただし、 途中の計算も書くこと。

問4
$b=56$の長方形の紙に対して【操作】を行ったところ、3種類の大きさの異なる正方形が全で5枚できた。このとき考えられる$a$の値をすべて求めなさい。
この動画を見る 

【高校受験対策】数学-文章題5

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・文章題5


右の記事は、ある中学校の保健委員会が発行した「保健だより」の一部である。
品数が「3品以上」と答えた生徒が、1、2年生あわせて149人であったとき、 朝食を「食べた」と答えた1年生、2年生はそれぞれ何人であったか、方程式をつくって求めなさい。なお途中の計算も書くこと。


A市の家庭における1か月あたりの水道料金は、 (水道料金)=(基本料金)+(水の使用量に応じた使用料金)となっています。
使用量が$30m^3$までは、$1m^3$あたりの使用料金が一定であり、使用量が$30m^3$を超えた分の$1m^3$があたりの使用料金は、 使用量が30$m^3$までの$1m^3$あたりの使用料金より80円高くなっています。
A市のある家庭における1ヶ月の水道料金は、使用量が$32m^3$のときは5310円、使用量が$28m^3$のときは4710円でした。 使用量が$30m^3$までの$1m^3$あたりの使用料金を求めなさい。
この動画を見る 

【高校受験対策】数学-死守35

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#1次関数#平行と合同#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守35

①$6a \div -(\frac{3}{2})$

➁$9-(-15)\div3$

③$\sqrt{54}+4\sqrt{6}$

④$4x^2 \times -\frac{5}{6}xy$

⑤$\sqrt{18}-\frac{4}{\sqrt{2}}$


$2x+5y=3$
$x-3y=7$

⑦$x=19$のとき、$x^2-10x+9$の値を求めなさい。

⑧2次方程式$x^2+3x-0$を解きなさい

⑨直線$y=-x+7$に平行で、点$(4,-1)$を通る直線の式を求めなさい。

⑩右の図のような五角柱ABCDEFGHIJにおいて、 辺AFとねじれの位置にある辺の数を求めなさい。

⑪半径が$6cm$、中心角が$40°$のおうぎ形の面積を求めなさい。 ただし円周率は$\pi$とする。

⑫$8\leqq \sqrt{n} \leqq9$にあてはまる自然数$n$は、全部で何個あるか求めなさい。


袋の中に赤玉が3個、白玉が2個入っています。
この袋の中から2個の玉を同時に取り出すとき、取り出した2個の玉が同じ色である確率を求めなさい。ただし、どの玉の取り出し方も同様に確からしいものとします。


底面の半径が$4cm$で、表面積が$84\pi cm^2$の円柱がある。
この円柱の体積を求めなさい。ただし円周率は$\pi$とする。
この動画を見る 

【数学】中2-24 連立方程式の利用⑤ 割合の応用編

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①ゆきさんは、Tシャツとスカートを$1$組買いました。
定価で買うと$4800$円のところを、
Tシャツを定価の$2$割引き、
スカートを定価の$30%$引きで買ったので
$3540$円でした。
それぞれの定価はいくら?

②$12%$の食塩水と$7%$の食塩水を混ぜ合わせて、$10%$の食塩水を$500g$つくります。
$2$種類の食塩水をそれぞれ何$g$ずつ混ぜればいい?
この動画を見る 

【数学】中2-26 連立方程式の利用⑦ 橋とトンネル編

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①____必ずをかいて、
列車の②____同士を比べよう!!

③とある列車は、$520m$の鉄橋を渡り始めてから渡り終わるまでに$41秒$かかった。
また、この列車が$800m$のトンネルを通過するとき、列車全体がトンネル内にあったのは$25$秒間だった。
この列車の長さと速さはいくつ?
この動画を見る 

【数学】中2-25 連立方程式の利用⑥ 数編

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①2つの数の和は$80$で、
一方の数は他方の数の$4倍$より
$5$小さい。$2$つの数はいくつ?

②ある$2$けたの自然数がある。
十の位の数は一の位の数の$2$倍より
$2$小さく、十の位の数と一の位の数を
入れかえてできる数は、もとの数より$27$小さくなる。
もとの自然数はいくつ?
この動画を見る 
PAGE TOP