数学(中学生)
数学(中学生)
【かなり便利!】3元1次連立方程式:中学からの連立方程式~全国入試問題解法

単元:
#数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x+2y+3z=14 $
$ 2x+y+z=7 $
$ x+3y+z=10 $ を解け.
この動画を見る
$ x+2y+3z=14 $
$ 2x+y+z=7 $
$ x+3y+z=10 $ を解け.
【中学数学】数学用語チェック絵本 act2 vol.1 式の計算

因数分解の難問をあっさりと解く練習~全国入試問題解法 #shorts #数学 #高校入試

単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ S $を因数分解しなさい.
$ S=n^4-5n^3-10n^2+35n+49 $
中央大附属高校過去問
この動画を見る
$ S $を因数分解しなさい.
$ S=n^4-5n^3-10n^2+35n+49 $
中央大附属高校過去問
【解答の流れは思い浮かぶか】整数:大阪星光学院高等学校~全国入試問題解法

単元:
#数学(中学生)#数A#整数の性質#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
19で割るとn余る自然数がある.
この自然数を11倍して1加えた数も19で割るとn余る.
nはいくつか?
大阪星光学院高等学校過去問
この動画を見る
19で割るとn余る自然数がある.
この自然数を11倍して1加えた数も19で割るとn余る.
nはいくつか?
大阪星光学院高等学校過去問
工夫して解こう!!連立方程式 共立女子第二

単元:
#数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
y - (3x - 1) = 0 \\
2(3x - 1) + 7y = 18
\end{array}
\right.
\end{eqnarray}
共立女子第二高等学校
この動画を見る
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
y - (3x - 1) = 0 \\
2(3x - 1) + 7y = 18
\end{array}
\right.
\end{eqnarray}
共立女子第二高等学校
ピッチャーの球が鳥に直撃する確率は?

因数分解 2通りで解説 立正大附属立正

単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^4 -17x^2 +16$
2023立正大学付属立正高等学校
この動画を見る
因数分解せよ
$x^4 -17x^2 +16$
2023立正大学付属立正高等学校
ただの二次方程式

【方法を徹底するために】2元1次連立方程式:中学からの連立方程式~全国入試問題解法

単元:
#数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の連立方程式を解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+2y=7 \\
2x+y=4
\end{array}
\right.
\end{eqnarray}$
この動画を見る
次の連立方程式を解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+2y=7 \\
2x+y=4
\end{array}
\right.
\end{eqnarray}$
中2数学「逆と反例」【毎日配信】

単元:
#数学(中学生)#中2数学#三角形と四角形
指導講師:
中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~逆と反例~
「AならはBである」
例題 次のことがらの逆をいいなさい。また、それが正しいかどうか 答えなさい。正しくない場合は、反例を1つ示しなさい。
(1)X=2、y=-3ならばxy=-6である。
(2) 2直線について、ℓ∥mならば、同位角は等しい。
(3) 底辺が6cm、高さが3cmの三角形の面積は9㎠である。
※図は動画内参照
この動画を見る
中2~逆と反例~
「AならはBである」
例題 次のことがらの逆をいいなさい。また、それが正しいかどうか 答えなさい。正しくない場合は、反例を1つ示しなさい。
(1)X=2、y=-3ならばxy=-6である。
(2) 2直線について、ℓ∥mならば、同位角は等しい。
(3) 底辺が6cm、高さが3cmの三角形の面積は9㎠である。
※図は動画内参照
因数分解(視聴者さんから)視聴者さんからよく問題をいただきますが、、、🙇♂️ 別解はコメント欄に

単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
$(a+b+c)(a-b+c)-2ab-2bc+2b^2$
この動画を見る
因数分解せよ
$(a+b+c)(a-b+c)-2ab-2bc+2b^2$
テクニカルに解け 比例式 立命館高校

単元:
#数学(中学生)#中1数学#比例・反比例#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{a+b}{2} = \frac{b+c}{3} = \frac{c+a}{4} $
$\frac{b}{a} + \frac{c}{b} + \frac{a}{c} = ?$
立命館高等学校
この動画を見る
$\frac{a+b}{2} = \frac{b+c}{3} = \frac{c+a}{4} $
$\frac{b}{a} + \frac{c}{b} + \frac{a}{c} = ?$
立命館高等学校
複雑に見える計算問題をスッキリと解く動画~全国入試問題解法 #shorts #数学 #高校受験 #sound

単元:
#数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \left(\dfrac{\sqrt5+\sqrt3}{\sqrt2}\right)^2+\left(\dfrac{\sqrt5+\sqrt3}{\sqrt2}\right)\left(\dfrac{\sqrt5-\sqrt3}{\sqrt2}\right)-\left(\dfrac{\sqrt5-\sqrt3}{\sqrt2}\right)^2 $を計算せよ.
都立国立高校過去問
この動画を見る
$ \left(\dfrac{\sqrt5+\sqrt3}{\sqrt2}\right)^2+\left(\dfrac{\sqrt5+\sqrt3}{\sqrt2}\right)\left(\dfrac{\sqrt5-\sqrt3}{\sqrt2}\right)-\left(\dfrac{\sqrt5-\sqrt3}{\sqrt2}\right)^2 $を計算せよ.
都立国立高校過去問
中2数学「二等辺三角形である証明」【毎日配信】

単元:
#数学(中学生)#中2数学#三角形と四角形
指導講師:
中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~二等辺三角形である証明~
例1 右の図の△ABCで、∠Bの二等分線と辺ACとの交点をDとします。また、点Dを通り、辺BCに平行な直線と辺ABの交点をEとします。このとき、△EBDは二等辺三角形であることを証明しなさい。
※図は動画内参照
この動画を見る
中2~二等辺三角形である証明~
例1 右の図の△ABCで、∠Bの二等分線と辺ACとの交点をDとします。また、点Dを通り、辺BCに平行な直線と辺ABの交点をEとします。このとき、△EBDは二等辺三角形であることを証明しなさい。
※図は動画内参照
【「変化の割合」のガイネンは今後も大切!】二次関数:法政大学第二高等学校~全国入試問題解法

単元:
#数学(中学生)#中3数学#2次関数#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ a \gt 0 $とする.
$ y=ax+2$と$ y-ax^2 $において
xが-1からaまで増加するときの変化の割合が等しいとき,
aの値を求めなさい.
法大第二高校過去問
この動画を見る
$ a \gt 0 $とする.
$ y=ax+2$と$ y-ax^2 $において
xが-1からaまで増加するときの変化の割合が等しいとき,
aの値を求めなさい.
法大第二高校過去問
ちょっと変わった連立方程式

単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
数学を数楽に
問題文全文(内容文):
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
\frac{1}{x+y} -x = 2 \\
\frac{1}{x+y} + y =4
\end{array}
\right.
\end{eqnarray}
2023中央大学付属高等学校
この動画を見る
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
\frac{1}{x+y} -x = 2 \\
\frac{1}{x+y} + y =4
\end{array}
\right.
\end{eqnarray}
2023中央大学付属高等学校
中2数学「二等辺三角形を使った合同証明」【毎日配信】

単元:
#数学(中学生)#中2数学#三角形と四角形
指導講師:
中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~二等辺三角形を使った合同証明~
例題 右の図の△ABCは、AB=ACの二等辺三角形です。辺AB上に点D、辺AC上に点EをBD=CEとなるようにとると、△CDB≡△BECであることを証明しなさい。
※図は動画内参照
この動画を見る
中2~二等辺三角形を使った合同証明~
例題 右の図の△ABCは、AB=ACの二等辺三角形です。辺AB上に点D、辺AC上に点EをBD=CEとなるようにとると、△CDB≡△BECであることを証明しなさい。
※図は動画内参照
一瞬で2点を通る直線を求める流れが分かる動画~全国入試問題解法 #数学 #高校受験 #shorts

単元:
#数学(中学生)#平面上の曲線#高校入試過去問(数学)#数C
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2点A,Cを通る直線の式を求めなさい.
宮城県高校過去問
この動画を見る
2点A,Cを通る直線の式を求めなさい.
宮城県高校過去問
因数分解 中央大附属 2023

単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
$a^2b^2 - 2abd -c^2 +d^2$
2023中央大学付属高等学校
この動画を見る
因数分解せよ
$a^2b^2 - 2abd -c^2 +d^2$
2023中央大学付属高等学校
福田の数学〜京都大学2023年理系第6問〜チェビシェフの多項式と論証(PART2)

単元:
#式の計算(単項式・多項式・式の四則計算)#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#その他#推理と論証#推理と論証#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ pを3以上の素数とする。また、θを実数とする。
(1)$\cos3\theta$と$\cos4\theta$を$\cos\theta$の式として表せ。
(2)$\cos\theta$=$\frac{1}{p}$のとき、θ=$\frac{m}{n}$・$\pi$となるような正の整数m,nが存在するか否かを理由をつけて判定せよ。
チェビシェフの多項式
$\cos n\theta$=$T_n$($\cos\theta$)を満たすn次の多項式$T_n(x)$が存在し、その係数はすべて整数であり、最高次の係数が$2^{n-1}$である。
これが、すべての自然数nについて成り立つことを数学的帰納法で証明せよ。
2023京都大学理系過去問
この動画を見る
$\Large\boxed{6}$ pを3以上の素数とする。また、θを実数とする。
(1)$\cos3\theta$と$\cos4\theta$を$\cos\theta$の式として表せ。
(2)$\cos\theta$=$\frac{1}{p}$のとき、θ=$\frac{m}{n}$・$\pi$となるような正の整数m,nが存在するか否かを理由をつけて判定せよ。
チェビシェフの多項式
$\cos n\theta$=$T_n$($\cos\theta$)を満たすn次の多項式$T_n(x)$が存在し、その係数はすべて整数であり、最高次の係数が$2^{n-1}$である。
これが、すべての自然数nについて成り立つことを数学的帰納法で証明せよ。
2023京都大学理系過去問
方程式の計算

【上手く数え上げるために…!】確率:法政大学国際高等学校~全国入試問題解法

単元:
#数学(中学生)#中2数学#確率#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
袋の中に白球が3個,赤球が2個,青球が1個の計6個の球がある.
この袋の中から3個の球を無作為に同時に取り出す.
取り出した3個の中に白球が2個だけ入っている確率を求めよ.
法大国際高校過去問
この動画を見る
袋の中に白球が3個,赤球が2個,青球が1個の計6個の球がある.
この袋の中から3個の球を無作為に同時に取り出す.
取り出した3個の中に白球が2個だけ入っている確率を求めよ.
法大国際高校過去問
証明できる?

福田の数学〜京都大学2023年理系第6問〜チェビシェフの多項式と論証(PART1)

単元:
#式の計算(単項式・多項式・式の四則計算)#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#その他#推理と論証#推理と論証#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ pを3以上の素数とする。また、θを実数とする。
(1)$\cos3\theta$と$\cos4\theta$を$\cos\theta$の式として表せ。
(2)$\cos\theta$=$\frac{1}{p}$のとき、θ=$\frac{m}{n}$・$\pi$となるような正の整数m,nが存在するか否かを理由をつけて判定せよ。
チェビシェフの多項式
$\cos n\theta$=$T_n$($\cos\theta$)を満たすn次の多項式$T_n(x)$が存在し、その係数はすべて整数であり、最高次の係数が$2^{n-1}$である。
これが、すべての自然数nについて成り立つことを数学的帰納法で証明せよ。
2023京都大学理系過去問
この動画を見る
$\Large\boxed{6}$ pを3以上の素数とする。また、θを実数とする。
(1)$\cos3\theta$と$\cos4\theta$を$\cos\theta$の式として表せ。
(2)$\cos\theta$=$\frac{1}{p}$のとき、θ=$\frac{m}{n}$・$\pi$となるような正の整数m,nが存在するか否かを理由をつけて判定せよ。
チェビシェフの多項式
$\cos n\theta$=$T_n$($\cos\theta$)を満たすn次の多項式$T_n(x)$が存在し、その係数はすべて整数であり、最高次の係数が$2^{n-1}$である。
これが、すべての自然数nについて成り立つことを数学的帰納法で証明せよ。
2023京都大学理系過去問
一瞬で図形問題の解法の流れをつかむ動画~全国入試問題解法 #数学 #高校入試 #shorts
単元:
#数学(中学生)#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \angle x$は何度であるか?
国立高専過去問
この動画を見る
$ \angle x$は何度であるか?
国立高専過去問
素因数分解せよ (国分寺高校)

【ひと工夫で簡単に解ける…!】連立方程式:東京工業大学附属科学技術高等学校~全国入試問題解法

単元:
#数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の連立方程式を解きなさい.
$\begin{eqnarray}
\left\{
\begin{array}{l}
1001x+999y=1007 \\
999x+1001y=993
\end{array}
\right.
\end{eqnarray}$
東工大科技高校過去問
この動画を見る
次の連立方程式を解きなさい.
$\begin{eqnarray}
\left\{
\begin{array}{l}
1001x+999y=1007 \\
999x+1001y=993
\end{array}
\right.
\end{eqnarray}$
東工大科技高校過去問
これ解ける?

一瞬で二次方程式の解法の流れをつかむ動画~全国入試問題解法 #shorts #数学 #高校入試 #sound

単元:
#数学(中学生)#中3数学#2次方程式#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
方程式$ 3\left(x-\dfrac{1}{2}\right)^2=3x+\dfrac{7}{4}$を解け.
成蹊高校過去問
この動画を見る
方程式$ 3\left(x-\dfrac{1}{2}\right)^2=3x+\dfrac{7}{4}$を解け.
成蹊高校過去問
ただの一次方程式

単元:
#数学(中学生)#中1数学#方程式
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\frac{1}{9}+\frac{1}{153}+\frac{1}{425}+\frac{1}{825}+\frac{1}{1353}=20$を解け
この動画を見る
$\frac{1}{9}+\frac{1}{153}+\frac{1}{425}+\frac{1}{825}+\frac{1}{1353}=20$を解け
