数学(中学生) - 質問解決D.B.(データベース) - Page 83

数学(中学生)

難易度MAX 2021ラ・サール最後の問題 D

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
半径1の2つの円が重ならないように正方形内を動く。
円の中心P,Qが存在しうる範囲の面積を求めよ。
*図は動画内参照

2021ラ・サール高等学校
この動画を見る 

直角三角形の中の正方形 A 解き方2通り 岡山白陵

アイキャッチ画像
単元: #数学(中学生)#中2数学#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#三角形と四角形#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
正方形の1辺の長さは?
*図は動画内参照

岡山白陵高等学校
この動画を見る 

【高校受験対策/数学】関数53

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数53

Q.
図1のように、関数$y=x^2$のグラフがある。
$A$はグラフ上の点で、$x$座標は$-1$である。また、2点$P,Q$はグラフ上を動くものとする。
このとき次の各問に答えなさい。ただし円周率は$\pi$とする。


関数$y=x^2$について、$x$の変域が$-3 \leqq x\leqq 2$のときの$y$の変域を求めなさい。


2点$P,Q$の$x$座標をそれぞれ$1$と$3$とする。
図2のように、$\triangle APQ$を原点$O$を中心として矢印の方向に$360°$回転移動させ、$\triangle APQ$が回転移動しながら通った部分に色をつけた。
このとき色がついている図形の面積を求めなさい。


2点$P,Q$の$x$座標をそれぞれ$3$と$4$とする。
直線$OA$上に四角形$OPQA$と$\triangle OPR$の面積が等しくなるように点$R$を取るとき、$R$の座標を求めなさい。
ただし$R$の$x$座標は負とする。
この動画を見る 

式の値の最大 最小 2021 ラ・サール C

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$-1 \leqq x \leqq 2$ , $3 \leqq y \leqq 4$のとき
$x^2y-y$の最大値,最小値は?

2021ラ・サール高等学校
この動画を見る 

気がつけば爽快!!  B

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
BD:DC=?
*図は動画内参照

2021西大和学園高等学校
この動画を見る 

長方形の折り返し 解き方2通り 大阪星光学院

アイキャッチ画像
単元: #数学(中学生)#中2数学#平面図形#図形の移動#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
△ABC=?
*図は動画内参照

大阪星光学院高等学校
この動画を見る 

平面図形 良問! 2021西大和学園 B

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
DE=?
*図は動画内参照

2021西大和学園高等学校
この動画を見る 

割ると余りと商が等しい 2021西大和学園B

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
自然数Nを49で割ったとき商と余りが等しくなった。
このようなNのうち2021より大きいNの個数は?

2021西大和学園高等学校
この動画を見る 

角度を求める A A A (清風)

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
四角形ABCDは正方形
$\angle DAE=?$
*図は動画内参照

横浜清風高等学校
この動画を見る 

【高校受験対策/数学】死守68

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中3数学#2次方程式#平面図形#平面図形その他#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$5+(-3)×2$を計算しなさい。

②$3xy^2÷ (-2x^2y)×4y$を計算しなさい。

③$a=\sqrt{6}$のとき$a(a+2)-2(a+2)$の値を求めなさい。

④二次方程式$x^2+6x-16=0$を解きなさい。

⑤$\sqrt{45}+\sqrt{5}-\sqrt{20}$を計算しなさい。

⑥定価1500円のTシャツを$a$割引で買ったときの代金を、$a$を使った式で表しなさい。
ただし消費税は考えないものとする。

⑦右の図は、ある中学校3年生男子50人の50m走の記録をヒストグラムに表したも のである。
図において、例えば6.0から 6.5の区間は、6.0秒以上6.5秒未満の階級を表したものである。
このとき最頻値を求めなさい。

⑧右の図のように、$\angle B=90°$である直角三角形$ABC$がある。
$DA=DB=BC$となるような点$D$が辺$AC$上にあるとき、$\angle x$の大きさを求めなさい。

③右の図のような$\triangle ABC$がある。
線分$AC$上にあり、$\angle PAB=\angle PBA$となる点$P$を作図によって求め、$P$の記号をつけなさい。
ただし作図に用いた線は残しておくこと。
この動画を見る 

共通テスト2021年詳しい解説〜共通テスト2021年2B第3問〜統計

アイキャッチ画像
単元: #数学(中学生)#大学入試過去問(数学)#確率分布と統計的な推測#確率分布#統計的な推測#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large第3問}$
Q高校の校長先生は、ある日、新聞で高校生の読書に関する記事を読んだ。そこで、
Q高校の生徒全員を対象に、直前の1週間の読書時間に関して、100人の
生徒を無作為に抽出して調査を行った。その結果、100人の生徒のうち、この
1週間に全く読書をしなかった生徒が36人であり、100人の生徒のこの1週間の
読書時間(分)の平均値は204であった。Q高校の生徒全員のこの1週間の読書時間
の母平均を$m$, 母標準偏差を150とする。

(1)全く読書をしなかった生徒の母比率を0.5とする。このとき、100人の無作為標本の
うちで全く読書をしなかった生徒の数を表す確率変数をXとすると、$X$は$\boxed{\boxed{\ \ ア\ \ }}$
に従う。また、Xの平均(期待値)は$\boxed{\ \ イウ\ \ }$、標準偏差は$\boxed{\ \ エ\ \ }$である。

$\boxed{\boxed{\ \ ア\ \ }}$については、最も適当なものを、次の⓪~⑤のうちから一つ選べ。
⓪正規分布$N(0,1)$
①二項分布$B(0,1)$
②正規分布$N(100,0.5)$
③二項分布$B(100,0.5)$
④正規分布$N(100,36)$
⑤二項分布$B(100,36)$


(2)標本の大きさ100は十分に大きいので、100人のうち全く読書をしなかった生徒
の数は近似的に正規分布に従う。
全く読書をしなかった生徒の母比率を0.5とするとき、全く読書をしなかった生徒
が36人以下となる確率を$p_5$とおく。$p_5$の近似値を求めると、$p_5=\boxed{\boxed{\ \ オ\ \ }}$である。
また、全く読書をしなかった生徒の母比率を0.4とするとき、全く読書をしなかった
生徒が36人以下となる確率を$p_4$とおくと、$\boxed{\boxed{\ \ カ\ \ }}$である。

$\boxed{\boxed{\ \ オ\ \ }}$については、最も適当なものを、次の⓪~⑤のうちから一つ選べ。
⓪$0.001$
①$0.003$
②$0.026$
③$0.050$
④$0.133$
⑤$0.497$

$\boxed{\boxed{\ \ カ\ \ }}$の解答群
⓪$p_4 \lt p_5$
①$p_4 = p_5$
②$p_4 \gt p_5$


(3)1週間の読書時間の母平均$m$に対する信頼度95%の信頼区間を
$C_1 \leqq m \leqq C_2$とする。標本の大きさ100は十分大きいことと、1週間
の読書時間の標本平均が204、母標準偏差が150であることを用いると、
$C_1+C_2=\boxed{\ \ キクケ\ \ }$、$C_2-C_1=\boxed{\ \ コサ\ \ }.\boxed{\ \ シ\ \ }$であることがわかる。
また、母平均$m$と$C_1,C_2$については$\boxed{\boxed{\ \ ス\ \ }}$。

$\boxed{\boxed{\ \ ス\ \ }}$の解答群
⓪$C_1 \leqq m \leqq C_2$が必ず成り立つ
①$m \leqq C_2$は必ず成り立つが、$C_1 \leqq m$が成り立つとは限らない
②$C_1 \leqq m$は必ず成り立つが、$m \leqq C_2$が成り立つとは限らない
③$C_1 \leqq m$も$m \leqq C_2$も成り立つとは限らない


(4)Q高校の図書委員長も、校長先生と同じ新聞記事を読んだため、校長先生が
調査をしていることを知らずに、図書委員会として校長先生と同様の調査を
独自に行った。ただし、調査期間は校長先生による調査と同じ直前の1週間であり、
対象をQ高校の生徒全員として100人の生徒を無作為に抽出した。その調査における
全く読書をしなかった生徒の数を$n$とする。
校長先生の調査結果によると全く読書をしなかった生徒は36人であり、
$\boxed{\boxed{\ \ セ\ \ }}$。

$\boxed{\boxed{\ \ セ\ \ }}$の解答群
⓪$n$は必ず36に等しい
①$n$は必ず36未満である
②$n$は必ず36より大きい
③$n$と36との大小はわからない


(5)(4)の図書委員会が行った調査結果による母平均$m$に対する信頼度95%の
信頼区間を$D_1 \leqq m \leqq D_2$、校長先生が行った調査結果による母平均$m$に対す
る信頼度95%の信頼区間を(3)の$C_1 \leqq m \leqq C_2$とする。ただし、母集団は同一
であり、1週間の読書時間の母標準偏差は150とする。
このとき、次の⓪~⑤のうち、正しいものは$\boxed{\boxed{\ \ ソ\ \ }}と\boxed{\boxed{\ \ タ\ \ }}$である。

$\boxed{\boxed{\ \ ソ\ \ }}$, $\boxed{\boxed{\ \ タ\ \ }}$の解答群(解答の順序は問わない。)
⓪$C_1=D_1とC_2=D_2$が必ず成り立つ。
①$C_1 \lt D_2$または$D_1 \lt C_2$のどちらか一方のみが成り立つ。
②$D_2 \lt C_1$または$C_2 \lt D_1$となる場合もある。
③$C_2-C_1 \gt D_2-D_1$が必ず成り立つ。
④$C_2-C_1 = D_2-D_1$が必ず成り立つ。
⑤$C_2-C_1 \lt D_2-D_1$が必ず成り立つ。

2021共通テスト過去問
この動画を見る 

【中学数学】平面図形の演習・証明~岐阜県公立高校入試2018年度~【高校受験】

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形#高校入試過去問(数学)#受験年度の数字を含む問題
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
動画内図で、$\triangle BDC$と$\triangle ACE$はともに正三角形である。
また、線分ADとBEとの交点をF,ADと辺BCとの交点をGとする。

(1) $\triangle ADC \equiv EBC$であることを証明せよ。

(2) AB=4cm,AC=4cm,BC=6cmのとき、
  (ア) DGの長さを求めよ。
  (イ) EFの長さを求めよ。
この動画を見る 

【高校受験対策/数学】死守67

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#比例・反比例#平行と合同#確率#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守67

① 2次方程式を$x^3+3x-1=0$を解きなさい。

②$\sqrt{24}\div\sqrt{3}-\sqrt{2}$を計算しなさい。

③関数$y=\frac{3}{x}$について、$x$の変域が$1 \leqq x \leqq 6$のとき、$y$の変域を答えなさい。


$x$枚の空の封筒と$y$本の鉛筆がある。
封筒の中に鉛筆を4本ずつ入れると8本足りず、3本ずつ入れると12本余る。
このとき$x$と$y$の値を求めなさい。


右の図のような、$AD=2cm$、$BC=5cm$、$AD/\!/BC$である台形$ABCD$があり、対角線$AC$、$BD$の交点を$E$とする。
点$E$から辺$DC$上に辺$BC$と線分$EF$が平行となる点$F$をとるとき、線分$EF$の長さを答えなさい。


1から6までの目のついた大、小2つのさいころを同時に投げたとき、大きいさいころの出た目の数を$a$、小さいさいころの出た目の数を$b$とする。
このとき、出た目の数の積$a×b$の値が25以下となる確率を求めなさい。


右の図のように直線$l$と2つの点$A$、$B$がある。
直線$l$上にあって、2つの点$A$、$B$を通る円の中心$P$を、定規とコンパスを用いて作図しなさい。
ただし作図に使った線は消さずに残しておくこと。
この動画を見る 

市川 整数 D

アイキャッチ画像
単元: #計算と数の性質#数学(中学生)#約数・倍数を利用する問題#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
(1)129と282の最小公倍数は?
(2)自然数A,Bの最大公約数をG、最小公倍数をLとする。
A,BをGで割ったときの商をそれぞれa,bとする。
(ⅰ)Lをa,b,Gで表せ
(ⅱ)A-2B-2G+L=2021のとき(A,B)をすべて求めよ。(G≠1)

2021市川高等学校
この動画を見る 

2021 日大習志野 角の和

アイキャッチ画像
単元: #数学(中学生)#中2数学#平面図形#角度と面積#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
6つの正方形を並べた長方形
$\angle x + \angle y = ?$

2021日本大学習志野高等学校
この動画を見る 

円錐台 内接球 2021 C

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
球を除いた体積=?
*図は動画内参照

2021専修大学松戸高等学校
この動画を見る 

2021 平方根と因数分解 A 昭和学院秀英

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
x=1111,y=-909のとき
$\sqrt{x^2-2xy+y^2+2x-2y+1} =?$

2021昭和学院秀英高等学校
この動画を見る 

2021渋谷幕張 円 D

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle BAC=60°$
(1)DE=?
(2)CE=?
*図は動画内参照

2021渋谷教育学園幕張高等学校
この動画を見る 

2021昭和学院秀英 確率

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
2⃣、3⃣、4⃣、5⃣、6⃣
5枚のカードから無作為に1枚取り出し数字を記録して戻す作業を3回繰り返したとき、記録した数字の積が4の倍数となる確率を求めよ。

2021昭和学院秀英高等学校
この動画を見る 

2021昭和秀英 正四角錐の外接球

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
底面の一辺が2の正方形、他の辺は$\sqrt 5$の正四角すい
5点ABCDEを通る球の体積を求めよ。
*図は動画内参照

2021昭和学院秀英高等学校
この動画を見る 

瞬殺!!三角形の面積二等分  慶應義塾

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△OABの面積を二等分するx軸に平行な直線の式を求めよ。
*図は動画内参照

慶應義塾高等学校
この動画を見る 

中2も解ける平面図形 C

アイキャッチ画像
単元: #数学(中学生)#平面図形#角度と面積#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
四角形AECDの面積=?
*図は動画内参照

熊本マリスト学園高等学校(改)
この動画を見る 

一定であることの証明 慶應志木

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
PD+PE=一定であることを証明せよ。
*図は動画内参照

慶應義塾志木高等学校
この動画を見る 

【中学数学】式の計算:等式変形マスターへの道 8発目!『最初に全部割れる編』 6x +4=8yをx=の形にしましょう。(すみません!まだあった!)

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 理数個別チャンネル
問題文全文(内容文):
6x +4=8yをx=の形にしましょう。
この動画を見る 

円 三角形の合同の証明 B

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
同じ大きさの円
△ABC≡△AEDを示せ
*図は動画内参照

関西学院高等部
この動画を見る 

文字式:慶応義塾高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#高校入試過去問(数学)#慶應義塾高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 慶応義塾高等学校

次の空欄をうめよ。
$3x^2 - 15x +7=0$ のとき
→$3x^4 – 15x^3 + 35x – 16 $
の値は▭である。
この動画を見る 

【高校受験対策/数学】図形38

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形38

Q
図1のように、円すい状のライトが床からの高さ300cmの天井からひもでつり下げられている。
図1の点線は円すいの母線を延長した直線を示しており、ライトから出た光はこの点線の内側を進んで床を円形に照りしているものとする。
図2、図3は天井からつり下げたライトを示したもので、図2のライトAは底面の直径が8cm、高さが10cm、図3のライトBは底面の直径が6cm、高さが10cmの円すいの側面を用いた形状となっている。


ライトAをつり下げるひもの長さが100cmのとき、このライトが床を照らしてできる円の直径を求めなさい。


ライトをつり下げるひもの長さが$x$cmのときにこのライトが床を照らしてできる円の直径を$y$ cmとする。
$x$の変域を$50 \leqq x \leqq 180$とするとき、$y$を$x$の式で表しなさい。
また、$y$の変域を求めなさい。


ライトAとライトBをそれぞれ天井からひもでつり下げて、ひもの長さを変えながら2つのライトが照らしてできる円の面積を調べた。
ライトをつり下げるひもの長さを$x$ cm、ライトBをつり下げるひもの長さを$\frac{x}{2}$ cmとしたとき
2つのライトを照らしてできる円の面積が等しくなるような$x$の値を求めなさい。
この動画を見る 

函館ラ・サール 面積比

アイキャッチ画像
単元: #数学(中学生)#中2数学#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#三角形と四角形#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△ECF:台形ABCD=?
*図は動画内参照

函館ラ・サール高等学校
この動画を見る 

四則演算:ラ・サール高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#高校入試過去問(数学)#ラ・サール高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 ラ・サール高等学校

$142^2 + 283^2 + 316^2 – 117^2 – 158^2 - 284^2$
を計算せよ。
この動画を見る 

2次方程式の応用 (灘)C

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
a>0 , b>0でaは奇数、bは素数
xの2次方程式
$x^2-ax-b^3=0$が
整数解をもつときa=? b=?

灘高等学校
この動画を見る 
PAGE TOP