【高校数学】毎日積分73日目~47都道府県制覇への道~【⑰岡山】【毎日17時投稿】 - 質問解決D.B.(データベース)

【高校数学】毎日積分73日目~47都道府県制覇への道~【⑰岡山】【毎日17時投稿】

問題文全文(内容文):
【岡山大学 2023】
$a<0,b>0$とする。2つの曲線$\displaystyle C:y=\frac{1}{x^2+1}$と$D:y=ax^2+b$がある。いま、$x>0$で$C$と$D$が共有点をもち、その点における2つの曲線の接線が一致しているとする。その共有点の$x$座標を$t$とし、$D$と$x$軸で囲まれた部分の面積を$S$とする。以下の問いに答えよ。
(1) $D$と$x$軸の交点の$x$座標を$±p$とし、$p>0$とする。$S$を$a$と$p$を用いて表せ。
(2) $a,b$を$t$を用いて表せ。
(3) $S$を$t$を用いて表せ。
(4) $t>0$の範囲で$S$が最大となるような$D$の方程式を求めよ。
チャプター:

0:00 鳥取について
0:20 (1)
2:23 (2)
4:39 (3)
7:03 今回のポイント

単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【岡山大学 2023】
$a<0,b>0$とする。2つの曲線$\displaystyle C:y=\frac{1}{x^2+1}$と$D:y=ax^2+b$がある。いま、$x>0$で$C$と$D$が共有点をもち、その点における2つの曲線の接線が一致しているとする。その共有点の$x$座標を$t$とし、$D$と$x$軸で囲まれた部分の面積を$S$とする。以下の問いに答えよ。
(1) $D$と$x$軸の交点の$x$座標を$±p$とし、$p>0$とする。$S$を$a$と$p$を用いて表せ。
(2) $a,b$を$t$を用いて表せ。
(3) $S$を$t$を用いて表せ。
(4) $t>0$の範囲で$S$が最大となるような$D$の方程式を求めよ。
投稿日:2024.02.23

<シリーズ動画(毎日積分【毎日17時投稿】)>

【高校数学】遂に完結!!北海道大学2024年の積分の問題をその場で解説しながら解いてみた!毎日積分104日目~47都道府県制覇への道~【㊼北海道】【最終回】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【北海道大学 2024】
関数
$f(x)=xlog(x+2)+1 (x>-2)$
を考える。$y=f(x)$で表される曲線を$C$とする。$C$の接線のうち傾きが正で原点を通るものを$l$とする。ただし、$logt$は$t$の自然対数である。
(1) 直線$l$の方程式を求めよ。
(2) 曲線$C$は下に凸であることを証明せよ。
(3) $C$と$l$および$y$軸で囲まれた部分の面積を求めよ。
この動画を見る 

【高校数学】弘前大学の積分の問題をその場で解説しながら解いてみた!毎日積分103日目~47都道府県制覇への道~【㊻青森】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【弘前大学 2023】
$\displaystyle \int_\frac{-π}{4}^\frac{π}{3}\frac{x}{cos^2x}dx$
この動画を見る 

【高校数学】岩手大学の積分の問題をその場で解説しながら解いてみた!毎日積分102日目~47都道府県制覇への道~【㊺岩手】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
■【岩手大学 2023】
(1) 不定積分$\displaystyle \int \frac{x^2}{\sqrt{x-1}}dx$を求めよ
(2) 次の曲線と$x$軸で囲まれた図形の面積を求めよ。
$\displaystyle y=cos2x+\frac{1}{2} (\frac{π}{4}≦x≦\frac{3}{4}π)$
(3) 曲線$y=\sqrt{x+1}e^{2x}$と$x$軸、$y$軸、および直線$x=1$で囲まれた図形を$x$軸のまわりに1回転してできる回転体の体積を求めよ。
この動画を見る 

【高校数学】秋田大学の積分の問題をその場で解説しながら解いてみた!毎日積分101日目~47都道府県制覇への道~【㊹秋田】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#秋田大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【秋田大学 2023】
座標平面上に媒介変数$θ$を用いて
$x=2cosθ, y=1+sinθ$
と表される曲線$C$がある。次の問いに答えなさい。
(i) 媒介変数$θ$を消去して$x$と$y$の関係式を求めなさい。
(ii) $\displaystyle θ=\frac{π}{6}$に対応する点における$C$の接線$l$の方程式を求めなさい。
(iii) 曲線$C$と(ii)の接線$l$および$x$軸で囲まれた図形の面積を求めなさい。
この動画を見る 

【高校数学】東北大学2024年の積分の問題をその場で解説しながら解いてみた!毎日積分100日目~47都道府県制覇への道~【㊸宮城】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【東北大学 2024】
$xyz$空間内の$xy$平面上にある円$C:x^2+y^2=1$および円板$D:x²+y²≦1$を考える。$D$を底面とし点$P(0,0,1)$を頂点とする円錐を$K$とする。$A(0,-1,0),B(0,1,0)$とする。$xyz$空間内の平面$H:z=x$を考える。すなわち、$H$は$xz$平面上の直線$z=x$と線分$AB$をともに含む平面である。$K$の側面と$H$の交わりとしてできる曲線を$E$とする。$\displaystyle -\frac{π}{2}≦θ≦\frac{π}{2}$を満たす実数$θ$に対し、円$C$上の点$Q(cosθ,sinθ,0)$をとり、線分$PQ$と$E$の共有点を$R$とする。
(1) 線分$PR$の長さを$r(θ)$とおく。$r(θ)$を$θ$を用いて表せ。
(2)円錐$K$の側面のうち、曲線$E$の点$A$から点$R$までを結ぶ部分、線分$PA$,および線分$PR$により囲まれた部分の面積を$S(θ)$とおく。$θ$と実数$h$が条件$\displaystyle 0≦θ<θ+h≦\frac{π}{2}$を満たすとき、次の不等式が成り立つことを示せ。
$\displaystyle \frac{h\{{r(θ)}\}^2}{2\sqrt{2}}≦S(θ+h)-S(θ)≦\frac{h\{{r(θ+h)\}}^2}{2\sqrt{2}}$
(3) 円錐$K$の側面のうち、円$C$の$x≧0$の部分と曲線$E$により囲まれた部分の面積を$T$とおく。$T$を求めよ。必要であれば$\displaystyle tan\frac{θ}{2}=u$とおく置換積分を用いてもよい。
この動画を見る 

【高校数学】山形大学の積分の問題をその場で解説しながら解いてみた!毎日積分99日目~47都道府県制覇への道~【㊷山形】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【山形大学 2023】
曲線$y=x^4+2x^3-3x^2$を$C$とし、$C$上の点$P(1,0)$における接線を$L$とするとき、次の(i),(ii),(iii)に答えよ。
(i) 接線$L$の方程式を求めよ。
(ii) 曲線$C$と接線$L$の共有点の座標を求めよ。
(iii) 曲線$C$と接線$L$で囲まれた部分の面積を求めよ。
この動画を見る 

【高校数学】福島大学の積分の問題をその場で解説しながら解いてみた!毎日積分98日目~47都道府県制覇への道~【㊶福島】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【福島大学 2023】
$a,p$を実数とする。曲線$C:y=2log_e x$が直線$l:y=ax$と点$P(p,ap)$で接している。このとき、以下の問いに答えなさい。
(1) 実数$p,a$の値を求めなさい。
(2) 曲線$C$と直線$x=p,y=0$で囲まれた図形の面積$S$を求めなさい。
(3) 関数$y=x(log_e x)^2$を$x$について微分しなさい。
(4) 曲線$C$と直線$l,y=0$で囲まれた図形を$x$軸のまわりに1回転してできる立体の体積$V$を求めなさい。
この動画を見る 

【高校数学】宇都宮大学の積分の問題をその場で解説しながら解いてみた!毎日積分97日目~47都道府県制覇への道~【㊵栃木】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【宇都宮大学 2023】
関数$f(x)=|x-1|, g(x)=e^{-2x+1}$により定まる座標平面上の曲線$y=(f\circ g)(x)$を$C$とする。ただし、$e$は自然対数の底で$e=2.71828…$である。次の問いに答えよ。
(1) $(f\circ g)(0)$および$\displaystyle \lim_{x \to \infty}(f\circ g)(x)$を求めよ。
(2) 座標平面上に曲線$C$の概形を図示せよ。
(3) $\displaystyle \frac{1}{2}<t<1$を満たす実数$t$に対し、$\displaystyle F(t)=(f\circ g)(\frac{t}{2})+(f\circ g)(t)$と定める。$F(t)$の増減を調べ、極値およびそのときの$t$の値を求めよ。
(4) 曲線$C$と直線$\displaystyle l:y=\frac{1}{2}$で囲まれる部分の面積$S$を求めよ。
この動画を見る 

【高校数学】群馬大学医学部の積分の問題をその場で解説しながら解いてみた!毎日積分96日目~47都道府県制覇への道~【㊴群馬】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【群馬大学(医) 2023】
$xy$平面上において、不等式$(ye^x)^2≦(sin2x)^2, 0≦x≦π$の表す領域を$D$とし、領域$D$と直線$x=a$の共通部分の線分の長さを$l(a)$とする。以下の問に答えよ。
(1) $l(a)$が$a=a_0$で最大となるとき、$tana_0$の値を求めよ。
(2)領域$D$の面積を求めよ。
この動画を見る 

【高校数学】筑波大学の積分の問題をその場で解説しながら解いてみた!毎日積分95日目~47都道府県制覇への道~【㊳茨城】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【筑波大学 2023】
$a,b$を実数とし、$f(x)=x+asinx, g(x)=bcosx$とする。
(1) 定積分$\displaystyle \int_{-π}^{π}f(x)g(x)dx$を求めよ。
(2)不等式
$\displaystyle \int_{-π}^{π}\{f(x)+g(x)\}^2dx≧\int_{-π}^{π}\{f(x)\}^2dx$
が成り立つことを示せ。
(3) 曲線$y=|f(x)+g(x)|$, 2直線$x=-π, x=π,$および$x$軸で囲まれた図形を$x$軸の周りに1回転させてできる回転体の体積を$V$とする。このとき不等式
$\displaystyle V≧\frac{2}{3}π^2(π^2-6)$
が成り立つことを示せ。さらに、等号が成立するときの$a,b$を求めよ。
この動画を見る 

【高校数学】千葉大学の積分の問題をその場で解説しながら解いてみた!毎日積分94日目~47都道府県制覇への道~【㊲千葉】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【千葉大学 2023】
等式$\displaystyle f(x)=x^2+\int_{-1}^{2}(xf(t)-t)dt$を満たす関数$f(x)$を求めよ。
この動画を見る 

【高校数学】埼玉大学の積分の問題をその場で解説しながら解いてみた!毎日積分93日目~47都道府県制覇への道~【㊱埼玉】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【埼玉大学 2017】
関数$f(x)$は微分可能で
$\displaystyle f(x)=x^2e^{-x}+\int_0^xe^{t-x}f(t)dt$
を満たすものとする。次の問いに答えよ。
(1) $f(0),f'(0)$を求めよ。
(2) $f'(x)$を求めよ。
(3) $f(x)$を求めよ。
この動画を見る 

【高校数学】東京大学2024年の積分の問題をその場で解説しながら解いてみた!毎日積分92日目~47都道府県制覇への道~【㉟東京】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【東京大学 2024】
座標空間内に3点A(1,0,0),B(0,1,0),C(0,0,1)をとり、D を線分ACの中点とする。三角形ABDの周および内部をx軸のまわりに1回転させて得られる立体の体積を求めよ。
この動画を見る 

【高校数学】横浜国立大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分91日目~47都道府県制覇への道~【㉞神奈川】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【横浜国立大学(後) 2023】
$\displaystyle \int_{log\frac{π}{4}}^{log\frac{π}{2}}\frac{e^{2x}}{\{sin(e^x)\}^2}dx$
この動画を見る 

【高校数学】新潟大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分90日目~47都道府県制覇への道~【㉝新潟】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【新潟大学 2023】
$a,b$を正の数とし、座標平面上の曲線
$C_1:y=e^{ax}, C_2:y=\sqrt{2x-b}$
を考える。次の問いに答えよ。
(1)関数$y=e^{ax}$,と関数$y=\sqrt{2x-b}$の導関数を求めよ。
(2)曲線$C_1$と曲線$C_2$が1点$P$を共有し、その点において共通の接線をもつとする。この時,$b$と点$P$の座標を$a$を用いて表せ。
(3) (2)において、曲線$C_1$,曲線$C_2$,$x$軸,$y$軸で囲まれる図形の面積を$a$を用いて表せ。
この動画を見る 

【高校数学】山梨大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分89日目~47都道府県制覇への道~【㉜山梨】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【山梨大学 2023】
等式$f(x)=sin2x+\displaystyle \int_0^{\frac{π}{2}}tf(t)dt$を満たす関数$f(x)$を求めよ。
この動画を見る 

【高校数学】信州大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分88日目~47都道府県制覇への道~【㉛長野】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【信州大学 2023】
tを実数とし、座標空間内の2点$P(0,0,t^2-1), Q(t,1,e^t+e^{-t}-e-e^{-1})$を考える。tを$-1≦t≦1$の範囲で動かすとき、線分PQが通過してできる曲面および2平面$y=1,z=0$で囲まれてできる立体の体積を求めよ。
この動画を見る 

【高校数学】静岡大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分87日目~47都道府県制覇への道~【㉚静岡】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#静岡大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【静岡大学 2023】
関数$f(x)=x^3e^{-x^2}$について、次の問いに答えよ。ただし、$e$は自然対数の底とする。必要ならば$\displaystyle \lim_{x \to \infty}\frac{x^3}{e^{x^2}}=0$を用いてもよい。
(1) 関数$f(x)$の増減を調べ、極値を求めよ。
(2) $a>0$とする。方程式$e^{x^2}-ax^3=0$の実数解の個数を求めよ。
(3) 曲線$y=f(x)$と$x$軸および直線$x=2$で囲まれた図形の面積を求めよ。
この動画を見る 

【高校数学】富山大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分86日目~47都道府県制覇への道~【㉙富山】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#数学(高校生)#富山大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【富山大学 2023】
(1) $\displaystyle t=tan\frac{x}{2} (-π<x<π)$とおく。
この時、$\displaystyle sinx=\frac{2t}{1+t^2}, cosx=\frac{1-t^2}{1+t^2}, \frac{dx}{dt}=\frac{2}{1+t^2}$であることを示せ。
(2) 定積分$\displaystyle \int_0^{\frac{π}{2}}\frac{dx}{1+sinx+cosx}$を求めよ。
(3) 2つの定積分$\displaystyle \int_0^{\frac{π}{2}}\frac{1+2sinx}{1+sinx+cosx}dx, \int_0^{\frac{π}{2}}\frac{1+2cosx}{1+sinx+cosx}dx$が等しいことを示せ。
(4) 定積分$\displaystyle \int_0^{\frac{π}{2}}\frac{1+2sinx}{1+sinx+cosx}dx$を求めよ。
(5) 定積分$\displaystyle \int_0^{\frac{π}{2}}\frac{sinx}{1+sinx+cosx}dx$を求めよ。
この動画を見る 

【高校数学】金沢大学2024年の積分の問題をその場で解説しながら解いてみた!毎日積分85日目~47都道府県制覇への道~【㉘石川】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#金沢大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【金沢大学 2024】
次の問いに答えよ。
(1) 関数$f(x)=e^{-x}sinx$と$g(x)=e^{-x}cosx$の導関数$f'(x),g'(x)$を求めよ。
(2) 整数$k$に対し、定積分$\displaystyle \int_{kπ}^{(k+1)π}e^{-x}sinxdx$を求めよ。
(3) 極限$\displaystyle \lim_{n\to \infty}\int_0^{nπ}e^{-x}|sinx|dx$を求めよ。
この動画を見る 

【高校数学】岐阜大学2024年の積分の問題をその場で解説しながら解いてみた!毎日積分84日目~47都道府県制覇への道~【㉗岐阜】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#岐阜大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【岐阜大学 2024】
関数$f(x)=x^2-1-2xlogx (x>0)$を考える。以下の問に答えよ。
ただし、$logx$は$x$の自然対数である。
(1) 関数$f(x)$を微分せよ。
(2) 曲線$y=f(x)$の変曲点の座標を求めよ。
(3) 曲線$y=f(x), x$軸, および2直線$\displaystyle x=\frac{1}{2}, x=2$で囲まれた部分の面積$S$を求めよ。
この動画を見る 

【高校数学】福井大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分83日目~47都道府県制覇への道~【㉖福井】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#福井大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【福井大学 2023】
$f(t)=2e^t-e^{2t}, g(t)=te^t$とし、$f(t)$が極大となる$t$の値を$α$、$f(t)=0$となる$t$の値を$β$とする。$xy$平面上の曲線$C$を$x=f(t), y=g(t) (α≦t≦β)$で与える。以下の問いに答えよ。
(1) $α$と$β$の値を求めよ。
(2) $α<t<β$の範囲で、$\frac{dy}{dx}$を$t$の関数として表せ。
(3) 曲線$C$と$x$軸および$y$軸で囲まれた図形の面積を求めよ。
この動画を見る 

【高校数学】名古屋大学2024年の手強い積分の問題をその場で解説しながら解いてみた!毎日積分82日目~47都道府県制覇への道~【㉕愛知】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【名古屋大学 2024】
袋の中にいくつかの赤玉と白玉が入っている。すべての玉に対する赤玉の割合を$p(0≦p≦1)$とする。袋から無作為に玉を一つ取り出して袋に戻す試行を行う。試行を$n$回行うとき、赤玉を$k$回以上取り出す確率を$f(k)$をおく。
(1) $n≧2$に対して、$f(1), f(2)$を求めよ。
(2) $k=1,2, ・・・・・・,n$に対して、等式
$\displaystyle f(k)=\frac{n!}{(k-1)!(n-k)!}\int_0^px^{k-1}(1-x)^{n-k}dx$
を示せ。
(3) 自然数$k$に対して、定積分
$\displaystyle I=\int_0^{\frac{1}{2}}x^k(1-x)^k dx$
を求めよ。
この動画を見る 

【高校数学】ワイエルシュトラス置換って何!?毎日積分81日目~47都道府県制覇への道~【㉔三重】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【三重大学 2009】
$\displaystyle \int_\frac{π}{3}^{\frac{π}{2}}\frac{1}{1+sinθ-cosθ}dθ$
この動画を見る 

【高校数学】滋賀医科大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分80日目~47都道府県制覇への道~【㉓滋賀】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#滋賀医科大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【滋賀医科大学 2023】
実数全体を定義域とする微分可能な関数$f(x)$は、常に$f(x)>0$であり、等式
$\displaystyle f(x)=1+\int_0^x e^t(1+t)f(t)dt$
を満たしている。
(1) $f(0)$を求めよ。
(2) $logf(x)$の導関数$(logf(x))’$を求めよ。
(3) 関数$f(x)$を求めよ。
(4) 方程式$f(x)=\frac{1}{\sqrt{2}}$を解け。
この動画を見る 

【高校数学】京都大学2024年の積分の問題をその場で解説しながら解いてみた!毎日積分79日目~47都道府県制覇への道~【㉒京都】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【京都大学 2024】
$a$は$a≧1$を満たす定数とする。座標平面上で、次の4つの不等式が表す領域を$D_a$ とする。
$\displaystyle x≧0, \frac{e^x-e^{-x}}{2}≦y, y≦ \frac{e^x+e^{-x}}{2}, y≦a$
次の問いに答えよ。
(1) $D_a$の面積$S_a$を求めよ。
(2) $\displaystyle \lim_{a\to \infty}S_a$を求めよ。
この動画を見る 

【高校数学】毎日積分78日目~47都道府県制覇への道~【㉑奈良】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【奈良教育大学 2023】
以下の問いに答えよ。
(1) 次の関数の導関数を求めよ。ただし、対数は自然対数とする。
(i) $log|x+\sqrt{1+x^2}|$
(ii) $\displaystyle \frac{1}{2}(x\sqrt{1+x^2}+log|x+\sqrt{1+x^2}|)$
(2)次の等式を示せ。
$\displaystyle \int_0^{\frac{π}{2}}\frac{cos^3x}{\sqrt{1+sin^2x}}dx=\frac{1}{2}\{3log(1+\sqrt{2})-\sqrt{2}\}$
この動画を見る 

【高校数学】毎日積分77日目~47都道府県制覇への道~【⑳和歌山】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#和歌山大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【和歌山大学 2023】
次の問いに答えよ。ただし、$\sqrt{3}>1.73$である。
(1)$ x=tant$の時,$\displaystyle \frac{1}{1+x^2}$を$cost$を用いて表せ。
(2) 定積分$\displaystyle \int_0^{\frac{1}{3}}\frac{1}{1+x^2}dx$を求めよ。
(3) すべての実数$x$に対して、$\displaystyle \frac{1}{1+x^2}≧1+ax^2$が成り立つような実数$a$の最大値を求めよ。
(4) 円周率は$3.07$より大きいことを示せ。
この動画を見る 

【高校数学】19回目にして遂に計算ミス発生!?毎日積分76日目~47都道府県制覇への道~【⑲大阪】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【大阪大学 2023】
$n$を$2$以上の自然数とする。
(1) $0≦x≦1$の時、次の不等式が成り立つことを示せ。
$\displaystyle \frac{1}{2}x^n≦(-1)^n\{\frac{1}{x+1}-1-\sum_{k=2}^n(-1)^{k-1}\}≦x^n-\frac{1}{2}x^{n+1}$
(2) $\displaystyle a_n=\sum_{k=1}^n\frac{(-1)^{k-1}}{k}$とするとき、次の極限値を求めよ。
$\displaystyle \lim_{n\to \infty} (-1)^nn(a_n-log2)$
この動画を見る 

【高校数学】毎日積分75日目~47都道府県制覇への道~【⑱兵庫】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【神戸大学 2023】
媒介変数表示
$\displaystyle x=sint, y=cos(t-\frac{π}{6})sint (0≦t≦π)$
で表される曲線を$C$とする。以下の問に答えよ。
(1) $\displaystyle \frac{dx}{dt}=0$ または $\displaystyle \frac{dy}{dt}=0$となる$t$の値を求めよ。
(2) $C$の概形を$xy$平面上に描け。
(3) $C$の$y≦0$の部分と$x$軸で囲まれた図形の面積を求めよ。
この動画を見る 

【高校数学】毎日積分74日目~47都道府県制覇への道~【九州~四国・中国地方総集編】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
九州~四国・中国地方総集編
テーマ別に並べています!
この動画を見る 

【高校数学】毎日積分72日目~47都道府県制覇への道~【⑯鳥取】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【鳥取大学 2023】
負でない整数$n=0,1,2,・・・$と正の実数$x>0$に対し、
$\displaystyle I_n=\frac{1}{n!}\int_0^xt^ne^{-t}dt$
とおく。以下の問いに答えよ。
(1) $I_0,I_1$を求めよ。
(2) $n=1,2,3,・・・$に対し、$I_n$と$I_{n-1}$の関係式を求めよ。
(3) $I_n(n=0,1,2,・・・)$を求めよ。
この動画を見る 

【高校数学】毎日積分71日目~47都道府県制覇への道~【⑮広島】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【広島大学 2023】
関数$\displaystyle f(x)=log\frac{3x+3}{x^2+3}$について、次の問いに答えよ。
(1) $y=f(x)$のグラフの概形をかけ。ただし、グラフの凹凸は調べなくてよい。
(2) $s$を定数とするとき、次の$x$についての方程式(*)の異なる実数解の個数を調べよ。
(*) $f(x)=s$
(3) 定積分$\displaystyle\int_0^3\frac{2x^2}{x^2+3}dx$の値を求めよ。
(4) (2)の(*)が実数解をもつ$s$に対して、(2)の(*)の実数解のうち最大のものから最小のものを引いた差を$g(s)$とする。ただし、(2)の(*)の実数解が一つだけであるときには$g(s)=0$とする。関数$f(x)$の最大値を$α$とおくとき、定積分$\displaystyle\int_0^αg(s)ds$の値を求めよ。
この動画を見る 

【高校数学】毎日積分70日目~47都道府県制覇への道~【⑭島根】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【島根大学 2023】
$a$を実数の定数、$n$を自然数とし、関数$f(x)$を$f(x)=1-ax^n$と定める。次の問いに答えよ。
(1) $\displaystyle \frac{n+5}{n+2}≦2$を示せ。
(2) $\displaystyle \int_0^1xf(x)dx≦\frac{2}{3}(\int_0^1f(x)dx)^2$を示せ。
(3) (2)の不等式において、等号が成立するときの$a$と$n$の値を求めよ。
この動画を見る 

【高校数学】毎日積分69日目~47都道府県制覇への道~【⑬山口】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【山口大学 2023】
座標平面上で、不等式
$\displaystyle \frac{1}{4}x^2-2≦y≦0またはx^2+y^2≦4$
の表す領域を$D_1$とし、不等式
$y>\sqrt{3}xかつx^2+y^2<2$
の表す領域を$D_2$とし、不等式
$y>-\sqrt{3}xかつx^2+y^2<2$
の表す領域を$D_3$とする。また、$D_2$と$D_3$の和集合を$X$とし、$D_1$から$X$を除いた領域を$Y$とする。このとき、次の問いに答えなさい。
(1)領域$D_1$を図示しなさい。
(2)領域$D_1$の面積を求めさない。
(3)領域$Y$を図示しなさい。
(4)領域$Y$の面積を求めなさい。
この動画を見る 

【高校数学】毎日積分68日目~47都道府県制覇への道~【⑫香川】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#香川大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$-1<x<1$を定義域とする関数$\displaystyle f(x)=\frac{1}{1-x^2}$について、次の問に答えよ。
(1)原点から曲線$C:y=f(x)$に引いた2本の接線それぞれの方程式を求めよ。
(2)$C$と(1)の2本の接線で囲まれてできる図形$D$の面積を求めよ。
(3)$D$を$y$軸のまわりに1回転させてできる立体の体積を求めよ。
【香川大学 2023】
この動画を見る 

【高校数学】毎日積分67日目~47都道府県制覇への道~【⑪徳島】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#徳島大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle f(x)=\frac{2x^2-x-1}{x^2+2x+2}$とする。
(1)$\displaystyle\lim_{x\to -\infty} f(x)$および$\displaystyle \lim_{x\to \infty} f(x)$を求めよ。
(2)導関数$f'(x)$を求めよ。
(3)関数$y=f(x)$の最大値と最小値を求めよ。
(4)曲線$y=f(x)$と$x$軸で囲まれた部分の面積を求めよ。
【徳島大学 2023】
この動画を見る 

【高校数学】毎日積分66日目~47都道府県制覇への道~【⑩愛媛】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#愛媛大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_{-\frac{π}{3}}^{\frac{π}{3}}(x+tanx)dx=[オ]$であり、$\int_{-\frac{π}{3}}^{\frac{π}{3}}|x+tanx|dx=[カ]$である。
関数$f(x)=x,g(x)=2xsinx$について、$f'(0)=1$であり、$g'(0)=[キ]$である。また、$0≦x≦\frac{π}{6}$において、直線$y=f(x)$と曲線$y=g(x)$とで囲まれた図形の面積は[ク]である。
【愛媛大学 2023】
この動画を見る 

【高校数学】毎日積分65日目~47都道府県制覇への道~【⑨高知(高知大学)】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)すべての実数$x$に対して
$sin3x=3sinx-4sin^3x$
$cos3x=-3cosx+4cos^3x$
が成り立つことを、加法定理と2倍角の公式を用いて示せ。
(2)実数$θ$を、$\displaystyle\frac{π}{3}<θ<\frac{π}{2}$と$cos3θ=\displaystyle-\frac{11}{16}$を同時に満たすものとする。このとき、$cosθ$を求めよ。
(3)(2)の$θ$に対して、定積分$\displaystyle\int_0^θsin^5xdx$を求めよ。
【高知大学 2023】
この動画を見る 

【高校数学】毎日積分64日目~47都道府県制覇への道~【⑧福岡】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$xy$平面上の曲線$C$を、媒介変数tを用いて次のように定める。
$x=t+2\sin^{2t}, y=t+\sin t (0\lt t\lt \pi)$
以下の問いに答えよ。
(1)曲線$C$に接する直線のうち$y$軸と平行なものがいくつあるか求めよ。
(2)曲線$C$のうち$y≦x$の領域にある部分と直線$y=x$で囲まれた図形の面積を求めよ。
【九州大学 2023】
この動画を見る 

【高校数学】毎日積分63日目~47都道府県制覇への道~【⑦佐賀】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の問に答えよ。
(1)等式$(\tan\theta)’=\dfrac{1}{\cos^2\theta}$を示せ。また、定積分$\displaystyle \int_{0}^{\frac{\pi}{4}}\dfrac{1}{\cos^2\theta}d\theta$の値を求めよ。
(2)等式$\dfrac{\cos\theta}{1+\sin\theta}+\dfrac{\cosθ}{1-\sin\theta}=\dfrac{2}{\cos\theta}$を示せ。また、定積分$\displaystyle \int_{0}^{\frac{\pi}{6}}\dfrac{1}{\cos\theta}d\theta$の値を求めよ。
(3)定積分$\displaystyle \int_{0}^{\frac{\pi}{6}}\dfrac{1}{\cos^3\theta}d\theta$の値を求めよ。
【佐賀大学 2023】
この動画を見る 

【高校数学】毎日積分62日目~47都道府県制覇への道~【⑥長崎】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$ a,b$を定数とする。すべての実数$x$で連続な関数$f(x)$について、等式
$\displaystyle\int_a^bf(x)dx = \displaystyle\int_a^bf(a+b-x)dx$
が成り立つことを証明せよ。また、定積分$\displaystyle\int_1^2\frac{x^2}{x^2+(3-x)^2}dx$を求めよ。
【長崎大学 2023】
この動画を見る 

【高校数学】毎日積分61日目~47都道府県制覇への道~【⑤大分】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線$C$を媒介変数$θ$を用いて
$\begin{equation}
\left\{ \,
\begin{aligned}
x=3cosθ \\
y=sin2θ
\end{aligned}
\right.
\end{equation}$
$(0≦θ≦π/2)$
と表す。
(1)曲線$C$上の点で、$y$座標の値が最大となる点の座標$(x,y)$を求めなさい。また、曲線$C$上の点で、$y$座標の値が最小となる点の座標$(x,y)$をすべて求めなさい。
(2)曲線$C$と$x$軸で囲まれた図形の面積$S$を求めなさい。
(3)曲線$C$と$x$軸で囲まれた図形を$x$軸のまわりに1回転してできる回転体の体積$V$を求めなさい。
【大分大学 2023】
この動画を見る 

【高校数学】毎日積分60日目~47都道府県制覇への道~【④熊本】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
定積分$\displaystyle \int_1^{\sqrt{t}}4tx(1-tx^2)e^{-tx^2}logxdx$の値を$t$を用いて表せ。
【熊本大学 2023】
この動画を見る 

【高校数学】毎日積分59日目~47都道府県制覇への道~【③宮崎】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数$\displaystyle f(x)=\frac{x}{1+x^2}$および座標平面上の原点$O$を通る曲線$C:y=f(x)$について、次の各問に答えよ。
(1)$f(x)$の導関数$f'(x)$および第2次導関数$f''(x)$を求めよ。
(2)直線$y=ax$が曲線$C$に$O$で接するときの定数$a$の値を求めよ。また、このとき、$x >0$において、$ax>f(x)$が成り立つことを示せ。
(3)関数$f(x)$の増減、極値、曲線$C$の凹凸、変曲点および漸近線を調べて、曲線$C$の概形をかけ。
(4)(2)で求めた$a$の値に対し、曲線$C$と直線$y=ax$および直線$x=\sqrt{3}$で囲まれた部分の面積$S$を求めよ。
【宮崎大学 2023】
この動画を見る 

【高校数学】毎日積分58日目~47都道府県制覇への道~【②鹿児島】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#鹿児島大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x>0$で定義された曲線
$C : y=(log x)^2$
を考える
(1)$a$を正の実数とする時、点$P(a,(log a)^2)$における曲線$C$の接線$L$の方程式を求めよ。
(2)$a>1$のとき、接線$L$と$x$軸の交点の$x$座標が最大となる場合の$a$の値$a_0$を求めよ。
(3)$a$の値が(2)の$a_0$に等しいとき、直線$L$の$y≧0$の部分と曲線$C$と$x$軸で囲まれた部分を、$x$軸の周りに1回転させてできる図形の体積を求めよ。
【鹿児島大学 2023】
この動画を見る 

【高校数学】毎日積分57日目~47都道府県制覇への道~【①沖縄】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#琉球大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a$を実数とし、$f(x)=xe^{-|x|}, g(x)=ax$とおく。次の問いに答えよ。
問1 $f(x)$の増減を調べ、$y=f(x)$のグラフの概形をかけ。ただし$\displaystyle \lim_{x\to \infty}xe^{-x}=0$は証明なしに用いてよい。
問2 $0<a<1$のとき、曲線$y=f(x)$と直線$y=g(x)$で囲まれた2つの部分の面積の和を求めよ。
【琉球大学 2023】
この動画を見る 

【高校数学】毎日積分56日目【難易度:★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle \int_0^1\frac{1}{e^x+2e^{-x}+3}dx$
これを解け.
この動画を見る 

【高校数学】毎日積分55日目【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle \int_{-\frac{π}{3}}^{\frac{π}{6}}\displaystyle \lvert\frac{4sinx}{\sqrt{3}cosx-sinx}\displaystyle \rvert dx$
これを解け.
この動画を見る 

【高校数学】毎日積分54日目 実践編⑤回転体シリーズ~斜めで、切り取って、最短距離のフルコース~【難易度:★★★★★】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$xyz$空間内において、連立不等式
$\frac{x^2}{4}+y^2≦1 , |z|≦6$
により定まる領域を$V$とし、2点$(2,0,2),(-2,0,-2)$を通る直線を$l$とする。
(1)$|t|≦2\sqrt2$を満たす実数tに対し、点$P_t(\frac{t}{\sqrt{2}},0,\frac{t}{\sqrt{2}})$を通り$l$に重直な平面を$H_t$とする。また、実数$\theta$に対し、点$(2\cos\theta,\sin\theta,0)$を通り$z$軸に平行な直線を$L_{\theta}$とする。$L_{\theta}$と$H_t$との交点の$z$座標を$t$と$\theta$を用いて表せ。
(2) $l$を回転軸に持つ回転体で$V$に含まれるものを考える。このような回転体のうちで体積が最大となるものの体積を求めよ。
【東京工業大学 2018】
この動画を見る 

【高校数学】毎日積分53日目 実践編④回転体シリーズ~斜めの回転軸~【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線$y=\frac{x^2}{\sqrt{2}}-x$と直線$y=x$で囲まれた部分を、直線$y=x$の周りに1回転させてできる立体の体積を求めよ
この動画を見る 

【高校数学】毎日積分52日目 実践編③回転体シリーズ~軸からの最長距離と最短距離~【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
2つの関数$f(x)=e^{-x} \sin x(0\leqq x\leqq 2\pi)$と$g(x)=-e^{-x}(0\leqq x\leqq 2\pi)$について、次の問いに答えよ。
(1)$f(x)$が最小値をとるときの$x$の値を求めよ。
(2)$f(x)=g(x)$をみたす$x$の値を求めよ。
(3)曲線$C1:y=f(x),C2:y=g(x)$と$y$軸で囲まれる部分を$x$軸のまわり
に1回転してできる立体の体積$V$を求めよ。
この動画を見る 

【高校数学】毎日積分51日目 実践編②回転体シリーズ~場合分け~【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
座標空間において,連立不等式
$x^2+y^2\leqq 1$
$|x|\leqq \sin z $
$|y|\leqq \sin z $
$0\leqq z \leqq \dfrac{\pi}{2}$
で定められる立体を$K$とする。
(1)$t$を$0\leqq t \leqq \dfrac{\pi}{2}$を満たす定数として、立体$K$を$z$軸に垂直な平面$z=t$で切ったときの断面積を$S(t)$とする。必要に応じて場合分けをして、$S(t)$を$t$の式で表せ。
(2)立体$K$のうち、2つの平面$z=0$と$z=\dfrac{\pi}{4}$ではさまれた部分の体積$V$を求めよ。
(3) 立体$K$の体積$W$を求めよ。
この動画を見る 

【高校数学】毎日積分50日目 実践編①回転体シリーズ~必要な平面を図示~【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$xyz$空間内で4点(0,0,0),(1,0,0),(1,1,0),(0,1,0)を頂点とする正方形の周および内部をKとし、Kをx軸のまわりに1回転させてできる立体をKx,Kをy軸のまわりに1回転させてできる立体をKyとする。さらに、KxとKyの共通部分をLとし、KxとKyの少なくともどちらか一方に含まれる点全体からなる立体をMとする。このとき、以下の問いに答えよ。
(1) Kxの体積を求めよ。
(2)平面$z=t$がKxと共有点をもつような実数tの値の範囲を答えよ。またこのとき、Kxを平面$z=t$で切った断面積A(t)を求めよ。
(3)平面$z=t$がLと共有点をもつような実数tの値の範囲を答えよ。また、このとき、Lを平面$z=t$で切った断面積B(t)を求めよ。
(4) Lの体積を求めよ。
(5) Mの体積を求めよ。
この動画を見る 

【高校数学】毎日積分49日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle \int_{\frac{π}{3}}^{\frac{π}{2}}\frac{sin\frac{x}{2}}{1+sin\frac{x}{2}}dx$
これを解け.
この動画を見る 

【高校数学】毎日積分48日目【難易度:★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle \int_1^4\frac{1}{\sqrt{x}(\sqrt{x}+1)}dx$
これを解け.
この動画を見る 

【高校数学】毎日積分47日目~③前の結果を用いて計算~【難易度:★★★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_{-\sqrt{2}}^{\sqrt{2}}\frac{8}{x^4+4}dx$
(3)前の結果を用いて計算せよ
この動画を見る 

【高校数学】毎日積分46日目~②tan1/8π,tan3/8πを求めよ~【難易度:★★★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_{-\sqrt{2}}^{\sqrt{2}}\frac{8}{x^4+4}dx$
(2)$tan\frac{1}{8}π,tan\frac{3}{8}π$を求めよ
この動画を見る 

【高校数学】毎日積分45日目~①まずは部分分数分解せよ~【難易度:★★★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_{-\sqrt{2}}^{\sqrt{2}}\frac{8}{x^4+4}dx$
(1)部分分数分解せよ
この動画を見る 

【高校数学】毎日積分44日目【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_1^{\sqrt{3}}\frac{1}{x^2}log\sqrt{1+x^2}dx$
これを解け.
この動画を見る 

【高校数学】毎日積分43日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int\frac{1}{sin^4x}dx$
これを解け.
この動画を見る 

【高校数学】毎日積分42日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^\frac{π}{2}\frac{1}{sinx+cosx+1}dx$
これを解け.
この動画を見る 

【高校数学】毎日積分41日目【球の体積を積分で考えてみよう】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
球の体積を積分で考えてみよう
この動画を見る 

【高校数学】毎日積分40日目【なぜ定積分で面積が求められるの?】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
なぜ定積分で面積が求められるのか解説していきます.
この動画を見る 

【高校数学】毎日積分39日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_1^2\frac{logx}{1+x^2}dx $
これを解け.
この動画を見る 

【高校数学】毎日積分38日目【難易度:★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_{logπ}^{log2π}e^xsine^xdx$
これを解け.
この動画を見る 

【高校数学】毎日積分37日目【難易度:★★★☆☆】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^2\frac{2x+1}{\sqrt{x^2+4}}dx$
この動画を見る 

【高校数学】毎日積分36日目【バウムクーヘン積分って実際どれくらい便利なの!?】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
バウムクーヘン積分について解説!まずは前回の動画をチェック!
この動画を見る 

【高校数学】毎日積分35日目【バウムクーヘン積分】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
今回は共通テスト直後ということで、バウムクーヘン積分について解説します.
この動画を見る 

【高校数学】毎日積分34日目【区分求積法】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
今回は共通テスト直後ということで、忘れがちな区分求積法について解説!
この動画を見る 

【高校数学】毎日積分33日目【難易度:★★★★★】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式が$1\leqq x\leqq 2$で成り立つような関数f(x)と定数A,Bを求めよ.
$\int_{\frac{1}{x}}^{\frac{2}{x}}|logy|f(xy)dy=3x(logx-1)+A+\frac{B}{x}$
ただし,f(x)は$1\leqq x\leqq 2$に対して定義される連続関数とする.(東京工業大学 2019)
この動画を見る 

【高校数学】毎日積分32日目【共通テスト直前特別編】【毎日17時投稿】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
偶関数・奇関数の積分について解説していきます.
この動画を見る 

【高校数学】毎日積分31日目【共通テスト直前特別編】【毎日17時投稿】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
共通テストでも使える!?面積を求めるときの積分の公式についてまとめました!
この動画を見る 

【高校数学】毎日積分30日目【難易度:★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^1\sqrt{1+2\sqrt{x}}dx$
これを解け.
この動画を見る 

【高校数学】毎日積分29日目【難易度:★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_1^4\frac{dx}{\sqrt{3-\sqrt{x}}}$
これを解け.
この動画を見る 

【高校数学】毎日積分28日目【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^1x\sqrt{-x^2+2x}dx$
これを解け.
この動画を見る 

【高校数学】毎日積分27日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_1^ex(logx)^2dx$
これを解け.
この動画を見る 

【高校数学】毎日積分26日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^{\frac{log3}{2}}\frac{e^x+1}{e^{2x}+1}dx$
これを解け.
この動画を見る 

【高校数学】毎日積分25日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^{\frac{π}{2}}x|sin^2x-\frac{1}{2}|dx$
これを解け.
この動画を見る 

【高校数学】毎日積分24日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^πx^2cos^2xdx$
これを解け.
この動画を見る 

【高校数学】毎日積分23日目【難易度:★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^{\frac{π}{4}}sinθcos2θdθ$
これを解け.
この動画を見る 

【高校数学】毎日積分22日目【難易度:★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^{\frac{π}{4}}sin^2θcos2θdθ$
これを解け.
この動画を見る 

【高校数学】毎日積分21日目【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^{\frac{π}{4}}\frac{dx}{sin^2x+3cos^2x}$
これを解け.
この動画を見る 

【高校数学】毎日積分20日目【難易度:★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^\frac{π}{4}\frac{dx}{1+sinx}$
これを解け.
この動画を見る 

【高校数学】毎日積分19日目【難易度:★★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^1\sqrt{x^2+1}dx$
これを解け.
この動画を見る 

【高校数学】毎日積分18日目【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^{\frac{π}{4}}\frac{dx}{cos^3x}$
これを解け.
この動画を見る 

【高校数学】毎日積分17日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^{\frac{π}{2}}xsin^3xdx$
これを解け.
この動画を見る 

【高校数学】毎日積分16日目【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_\frac{π}{3}^{\frac{2}{3}π}\frac{dθ}{sinθ}$
これを解け.
この動画を見る 

【高校数学】毎日積分15日目【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^\frac{π}{3}\frac{dx}{sinx+\sqrt{3}cosx}$
これを解け.
この動画を見る 

【高校数学】毎日積分14日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^\frac{π}{2}e^{-3x}sinxdx$
これを解け.
この動画を見る 

【高校数学】毎日積分13日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^1log\frac{x+2}{x+1}dx$
これを解け.
この動画を見る 

【高校数学】毎日積分12日目【難易度:★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^1x^2e^{-x}dx$
これを解け.
この動画を見る 

【高校数学】毎日積分11日目【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^{\frac{π}{2}}\frac{sinθ}{sinθ+cosθ}dθ$
これを解け.
この動画を見る 

【高校数学】毎日積分10日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_e^{e^e}\frac{log(logx)}{xlogx}dx$
これを解け.
この動画を見る 

【高校数学】毎日積分9日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_1^{512}\frac{sin(πlog_2x)}{x}dx$
これを解け.
この動画を見る 

【高校数学】毎日積分8日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_1^e5^{\log x}dx$
これを解け.
この動画を見る 
PAGE TOP