2024年共通テスト速報〜数学ⅠA第1問の(1)〜福田の入試解説 - 質問解決D.B.(データベース)

2024年共通テスト速報〜数学ⅠA第1問の(1)〜福田の入試解説

問題文全文(内容文):
$n \lt 2\sqrt{ 13 } \lt n+1$を満たす整数nはアである。
実数a,bを$a=2\sqrt{ 13 }$-ア,b=$\frac{1}{a}$で定める。このとき
$b=\frac{イ+2\sqrt{13}}{ウ}$である。また、$a^2-9b^2=エオカ\sqrt{13}$である。
①(7$\lt 2\sqrt{13} \lt 8$)から$\frac{7}{2} \lt \sqrt{13} \lt 4$が成り立つ。
①と④($b=\frac{7+2\sqrt{13}}{3}$)から$\frac{m}{ウ} \lt b \lt \frac{m+1}{ウ}$を満たすmはキク
よって③($b=\frac{1}{a}$)から$\frac{a}{15} \lt a \lt \frac{ウ}{14}$・・・⑥が成り立つ。
$\sqrt{13}$の整数部分はケであり、②($a=2\sqrt{13}-7$)と⑥から$\sqrt{13}$の小数点第1位の数字はコ、小数点第2位の数字はサである。

2024共通テスト過去問
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
$n \lt 2\sqrt{ 13 } \lt n+1$を満たす整数nはアである。
実数a,bを$a=2\sqrt{ 13 }$-ア,b=$\frac{1}{a}$で定める。このとき
$b=\frac{イ+2\sqrt{13}}{ウ}$である。また、$a^2-9b^2=エオカ\sqrt{13}$である。
①(7$\lt 2\sqrt{13} \lt 8$)から$\frac{7}{2} \lt \sqrt{13} \lt 4$が成り立つ。
①と④($b=\frac{7+2\sqrt{13}}{3}$)から$\frac{m}{ウ} \lt b \lt \frac{m+1}{ウ}$を満たすmはキク
よって③($b=\frac{1}{a}$)から$\frac{a}{15} \lt a \lt \frac{ウ}{14}$・・・⑥が成り立つ。
$\sqrt{13}$の整数部分はケであり、②($a=2\sqrt{13}-7$)と⑥から$\sqrt{13}$の小数点第1位の数字はコ、小数点第2位の数字はサである。

2024共通テスト過去問
投稿日:2024.01.14

<関連動画>

素因数分解せよ 慶應女子

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$110 \times 90 + 13 \times 7$
この動画を見る 

【数Ⅰ】【図形と計量】有名角以外を含む三角比の計算 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式の値を求めよ。
(1) $\sin^2 40°+\sin^2 50°$
(2) $\tan35°\tan55°+\tan15°\tan75°$
(3) $(\sin70°+\sin20°)^2-2\tan70°\cos^2 50°$
この動画を見る 

二乗の差は和と差の積

アイキャッチ画像
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2-y^2=$
*図は動画内参照
この動画を見る 

福田の一夜漬け数学〜2次関数・解の存在範囲(1)〜高校1年生

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#解と判別式・解と係数の関係#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}} x^2-2mx-m+2=0$ が次のような解をもつとき、定数$m$の
値の範囲を求めよ。

(1)異なる2つの正の解
(2)異なる2つの負の解
(3)異符号の解
(4)2つの0以上の解
(5)2つの0以下の解
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試IⅡAB第2問〜2つのグラフの共有点の個数と面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#微分法と積分法#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$$a,k$を実数とし、xの関数$f(x),\ g(x)$を次のようにする。
$f(x)=x^3-ax, g(x)=|x|+k$

(1)$a=4,\ k=0$のとき、曲線$y=f(x)$と$y=g(x)$は3個の異なる共有点をもつ。
それぞれの交点のx座標は$-\sqrt{\boxed{\ \ ア\ \ }},\ 0,\ \sqrt{\boxed{\ \ イ\ \ }}$である。

(2)$k=0$のとき、曲線$y=f(x)$と$y=g(x)$がちょうど2個の異なる共有点をもつ
aの範囲は$\boxed{\ \ ウ\ \ }$かつ$\boxed{\ \ エ\ \ }$である。

(3)$a=4$のとき、曲線$y=f(x)$と$y=g(x)$が3個の異なる共有点をもつkの範囲は
$-\frac{\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キク\ \ }}}{\boxed{\ \ ケ\ \ }} \lt k \lt \boxed{\ \ コ\ \ }$である。

(4)$a=4,\ k=\boxed{\ \ コ\ \ }$のとき、曲線$y=f(x)$と$y=g(x)$の共有点のx座標は$-\boxed{\ \ サ\ \ }$
と$\boxed{\ \ シ\ \ }+\sqrt{\boxed{\ \ ス\ \ }}$であり、$y=f(x)$と$y=g(x)$で囲まれる図形の面積は
$\boxed{\ \ セ\ \ }+\boxed{\ \ ソ\ \ }\sqrt{\boxed{\ \ タ\ \ }}$である。

$\boxed{\ \ ウ\ \ }$の解答群
$⓪-2 \lt a  ①-2 \leqq a  ②-1 \lt a  ③-1 \leqq a  ④0 \lt a$
$⑤0 \leqq a  ⑥1 \lt a  ⑦1 \leqq a  ⑧2 \lt a  ⑨2 \leqq a$

$\boxed{\ \ エ\ \ }$の解答群
$⓪a \lt -2  ①a \leqq -2  ②a \lt -1  ③a \leqq -1  ④a \lt 0$
$⑤a \leqq 0  ⑥a \lt 1  ⑦a \leqq 1  ⑧a \lt 2  ⑨a \leqq 2$

2021明治大学全統過去問
この動画を見る 
PAGE TOP