福田の数学〜立教大学2022年経済学部第2問〜平面ベクトルの直交条件 - 質問解決D.B.(データベース)

福田の数学〜立教大学2022年経済学部第2問〜平面ベクトルの直交条件

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ tを正の実数とする。OA=1,\ OB=tである三角形OABにおいて、\overrightarrow{ a }=\overrightarrow{ OA },\\
\overrightarrow{ b }=\overrightarrow{ OB },\angle AOB=θとする。ただし、0 \lt θ \lt \frac{\pi}{2}とする。また、辺OAの中点\\
をM、辺OBを1:2に内分する点をNとする。次の問いに答えよ。\hspace{70pt}\\
(1)\overrightarrow{ AN }と\overrightarrow{ BM }を\overrightarrow{ a }と\overrightarrow{ b }を用いて表せ。\hspace{180pt}\\
(2)内積\overrightarrow{ AN }・\overrightarrow{ BM }をtと\cos θを用いて表せ。\hspace{148pt}\\
(3)\overrightarrow{ AN }∟\overrightarrow{ BM }であるとき、\cos θをtを用いて表せ。\hspace{119pt}\\
(4)\overrightarrow{ AN }∟\overrightarrow{ BM }であるとき、\cos θの最小値とそれを与えるtの値をそれぞれ求めよ。\hspace{5pt}\\
(5)\overrightarrow{ AN }∟\overrightarrow{ BM }となるθが存在するtの値の範囲を求めよ。\hspace{103pt}\\
\end{eqnarray}

2022立教大学経済学部過去問
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ tを正の実数とする。OA=1,\ OB=tである三角形OABにおいて、\overrightarrow{ a }=\overrightarrow{ OA },\\
\overrightarrow{ b }=\overrightarrow{ OB },\angle AOB=θとする。ただし、0 \lt θ \lt \frac{\pi}{2}とする。また、辺OAの中点\\
をM、辺OBを1:2に内分する点をNとする。次の問いに答えよ。\hspace{70pt}\\
(1)\overrightarrow{ AN }と\overrightarrow{ BM }を\overrightarrow{ a }と\overrightarrow{ b }を用いて表せ。\hspace{180pt}\\
(2)内積\overrightarrow{ AN }・\overrightarrow{ BM }をtと\cos θを用いて表せ。\hspace{148pt}\\
(3)\overrightarrow{ AN }∟\overrightarrow{ BM }であるとき、\cos θをtを用いて表せ。\hspace{119pt}\\
(4)\overrightarrow{ AN }∟\overrightarrow{ BM }であるとき、\cos θの最小値とそれを与えるtの値をそれぞれ求めよ。\hspace{5pt}\\
(5)\overrightarrow{ AN }∟\overrightarrow{ BM }となるθが存在するtの値の範囲を求めよ。\hspace{103pt}\\
\end{eqnarray}

2022立教大学経済学部過去問
投稿日:2022.09.24

<関連動画>

福田の数学〜大阪大学2022年文系第1問〜交点の位置ベクトルと線分の長さ

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 三角形ABCにおいて、辺ABを2:1に内分する点をM、辺ACを1:2に内分する点をNとする。\\
また、線分BNと線分CMの交点をPとする。\\
(1)\overrightarrow{ AP }を、\overrightarrow{ AB }と\overrightarrow{ AC }を用いて表せ。\\
(2)辺BC,CA,CBの長さをそれぞれa,b,cとするとき、線分APの長さを、a,b,cを用いて表せ。
\end{eqnarray}

2022大阪大学文系過去問
この動画を見る 

【数C】一次独立なベクトルで他のベクトルを扱おう!

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #アドバンスプラス#アドバンスプラス数Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
アドバンスプラス数学B
問題618
vec(a)=(2,5),vec(b)=(1,3)がある。次のベクトルをl vec(a)+m vec(b)の形で表せ。
(1) vec(c)=(1,0)
この動画を見る 

【数C】平面ベクトル:ベクトルの公式を基礎から

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルの基本公式を説明する動画です
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第1問(1)〜ベクトルの図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)点Oを中心とする半径1の円に内接する三角形ABCにおいて\\
-5\overrightarrow{ OA }+7\overrightarrow{ OB }+8\overrightarrow{ OC }=\overrightarrow{ 0 }\\
が成り立っているとする。また直線OAと直線BCの交点をPとする。\\
このとき線分BC,OPの長さを求めるとBC=\boxed{\ \ (あ)\ \ },OP=\boxed{\ \ (い)\ \ }\\
である。さらに三角形ABCの面積は\boxed{\ \ (う)\ \ }である。
\end{eqnarray}

2021慶應義塾大学医学部過去問
この動画を見る 

【数B】ベクトル:ベクトルの基本⑯点の存在範囲を考える

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点の存在範囲を考える問題に関して解説していきます.
この動画を見る 
PAGE TOP