福田の数学〜明治大学2021年全学部統一入試IⅡAB第3問〜平面幾何とベクトル - 質問解決D.B.(データベース)

福田の数学〜明治大学2021年全学部統一入試IⅡAB第3問〜平面幾何とベクトル

問題文全文(内容文):
${\Large\boxed{3}}$辺の長さが2である正六角形ABCDEFがあり、点O,P,Qは次の条件を満たす。
・点Oは辺AB上にある。
・点Pは正六角形ABCDFの内部にある。
・点Qは線分CP上にある。
・三角形OCPと三角形OQFは共に正三角形である。

(1)四角形OQPFに着目すると、$\angle OFQ=\angle OPQ$より、
OQPFは円に内接する四角形なので、$\angle OPF=\boxed{\ \ アイ\ \ }°$とわかる。

(2)$AB //FC$に着目すると、$\triangle OCF=\boxed{\ \ ウ\ \ }\sqrt{\boxed{\ \ エ\ \ }}$である。$OC//FP$
であることに着目すると、$\triangle OCP=\triangle OCF$なので、$OC^2=\boxed{\ \ オ\ \ }$とわかる。
また、$OB=\sqrt{\boxed{\ \ カ\ \ }}-\boxed{\ \ キ\ \ }$である。

(3)$OQ^2=OF^2=\boxed{\ \ クケ\ \ }-\boxed{\ \ コ\ \ }\sqrt{\boxed{\ \ サ\ \ }}$であり、
$\overrightarrow{ OQ }=t\ \overrightarrow{ OP }+(1-t)\ \overrightarrow{ OC }$
とおくと、$t$は$t^2-t+\sqrt{\boxed{\ \ シ\ \ }}-\boxed{\ \ ス\ \ }=0$を満たす。

2021明治大学全統過去問
単元: #数A#図形の性質#平面上のベクトル#周角と円に内接する四角形・円と接線・接弦定理#平面上のベクトルと内積#数学(高校生)#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$辺の長さが2である正六角形ABCDEFがあり、点O,P,Qは次の条件を満たす。
・点Oは辺AB上にある。
・点Pは正六角形ABCDFの内部にある。
・点Qは線分CP上にある。
・三角形OCPと三角形OQFは共に正三角形である。

(1)四角形OQPFに着目すると、$\angle OFQ=\angle OPQ$より、
OQPFは円に内接する四角形なので、$\angle OPF=\boxed{\ \ アイ\ \ }°$とわかる。

(2)$AB //FC$に着目すると、$\triangle OCF=\boxed{\ \ ウ\ \ }\sqrt{\boxed{\ \ エ\ \ }}$である。$OC//FP$
であることに着目すると、$\triangle OCP=\triangle OCF$なので、$OC^2=\boxed{\ \ オ\ \ }$とわかる。
また、$OB=\sqrt{\boxed{\ \ カ\ \ }}-\boxed{\ \ キ\ \ }$である。

(3)$OQ^2=OF^2=\boxed{\ \ クケ\ \ }-\boxed{\ \ コ\ \ }\sqrt{\boxed{\ \ サ\ \ }}$であり、
$\overrightarrow{ OQ }=t\ \overrightarrow{ OP }+(1-t)\ \overrightarrow{ OC }$
とおくと、$t$は$t^2-t+\sqrt{\boxed{\ \ シ\ \ }}-\boxed{\ \ ス\ \ }=0$を満たす。

2021明治大学全統過去問
投稿日:2021.09.19

<関連動画>

【数学B/平面ベクトル】点Pの存在範囲(2)

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\triangle OAB$に対して、点$P$が次の条件を満たしながら動くとき、点$P$の存在範囲を図示せよ。
$\overrightarrow{ OP }=s\overrightarrow{ OA }+t\overrightarrow{ OB },$ $2 \leqq s+t \leqq 3,$ $s \geqq 0,$ $t \geqq 0$
この動画を見る 

【高校数学】 数B-45 位置ベクトルと図形①

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$A(\overrightarrow{a}),B(\overrightarrow{b}),C(\overrightarrow{c}),D(\overrightarrow{d})$を頂点とする四面体の辺$BC$を$3:1$に内分する点を
$P,DP$を$4:3$に外分する点を$Q$,線分$AQ$の中点を$R$とする.
点$P$,点$Q$,点$R$の位置ベクトルを,$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c},\overrightarrow{d}$で表そう.

②四面体$OABC$がある.線分$AB$を$2:3$に内分する点を$P$,
線分$OP$を$10:1$に外分する点を$Q$,線分$CQ$を$3:1$に内分する点を$R$とする.
$\triangle ARB$の重心を$G$とするとき,
$\overrightarrow{OG}$を$\overrightarrow{OA}=\large{\overrightarrow{a}}=\overrightarrow{OB}=\large{\overrightarrow{b}},\overrightarrow{OC},\large{\overrightarrow{c}}$で表そう.
この動画を見る 

【高校数学】数Ⅲ-45 極座標と極方程式②

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の極座標の点$A,B$の直交座標を求めよ。

①$A\left(3,\dfrac{\pi}{6}\right)$

②$B\left(2,-\dfrac{5}{6}\pi\right)$

次の直交座標の点$C,D$の極座標$(r,\theta)$を求めよ。
ただし、$0\leqq \theta \leqq 2\pi$とする。

③$C(0,-2)$

④$D(\sqrt3,-3)$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題077〜東京大学2018年度理系第3問〜ベクトル方程式の表す点の存在範囲と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#微分法と積分法#ベクトルと平面図形、ベクトル方程式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#面積、体積#東京大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
第3問
放物線y=$x^2$のうち-1≦x≦1を満たす部分をCとする。
座標平面上の原点Oと点A(1,0)を考える。k>0を実数とする。点PがC上を動き、点Qが線分OA上を動くとき
$\overrightarrow{OR}$=$\frac{1}{k}\overrightarrow{OP}$+$k\overrightarrow{OQ}$
を満たす点Rが動く領域の面積をS(k)とする。
S(k)および$\displaystyle\lim_{k \to +0}S(k)$, $\displaystyle\lim_{k \to \infty}S(k)$を求めよ。

2018東京大学理系過去問
この動画を見る 

【数B】平面ベクトル:ベクトルの終点の存在範囲 その1

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
△OABに対し、OP=sOA+tOBとする。
次のとき、点Pの存在範囲を求めよ。
(1)$s+2t=3$
(2)$1≦s+t≦2, s≧0, t≧0$
この動画を見る 
PAGE TOP