問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 辺の長さが2である正六角形ABCDEFがあり、点O,P,Qは次の条件を満たす。\\
・点Oは辺AB上にある。\\
・点Pは正六角形ABCDFの内部にある。\\
・点Qは線分CP上にある。\\
・三角形OCPと三角形OQFは共に正三角形である。\\
\\
(1)四角形OQPFに着目すると、\angle OFQ=\angle OPQより、\\
OQPFは円に内接する四角形なので、\angle OPF=\boxed{\ \ アイ\ \ }°とわかる。\\
\\
(2)AB //FCに着目すると、\triangle OCF=\boxed{\ \ ウ\ \ }\sqrt{\boxed{\ \ エ\ \ }}である。OC//FP\\
であることに着目すると、\triangle OCP=\triangle OCFなので、OC^2=\boxed{\ \ オ\ \ }とわかる。\\
また、OB=\sqrt{\boxed{\ \ カ\ \ }}-\boxed{\ \ キ\ \ }\ である。\\
\\
(3)OQ^2=OF^2=\boxed{\ \ クケ\ \ }-\boxed{\ \ コ\ \ }\sqrt{\boxed{\ \ サ\ \ }}であり、\overrightarrow{ OQ }=t\ \overrightarrow{ OP }+(1-t)\ \overrightarrow{ OC }\\
とおくと、tはt^2-t+\sqrt{\boxed{\ \ シ\ \ }}-\boxed{\ \ ス\ \ }=0を満たす。
\end{eqnarray}
2021明治大学全統過去問
\begin{eqnarray}
{\Large\boxed{3}} 辺の長さが2である正六角形ABCDEFがあり、点O,P,Qは次の条件を満たす。\\
・点Oは辺AB上にある。\\
・点Pは正六角形ABCDFの内部にある。\\
・点Qは線分CP上にある。\\
・三角形OCPと三角形OQFは共に正三角形である。\\
\\
(1)四角形OQPFに着目すると、\angle OFQ=\angle OPQより、\\
OQPFは円に内接する四角形なので、\angle OPF=\boxed{\ \ アイ\ \ }°とわかる。\\
\\
(2)AB //FCに着目すると、\triangle OCF=\boxed{\ \ ウ\ \ }\sqrt{\boxed{\ \ エ\ \ }}である。OC//FP\\
であることに着目すると、\triangle OCP=\triangle OCFなので、OC^2=\boxed{\ \ オ\ \ }とわかる。\\
また、OB=\sqrt{\boxed{\ \ カ\ \ }}-\boxed{\ \ キ\ \ }\ である。\\
\\
(3)OQ^2=OF^2=\boxed{\ \ クケ\ \ }-\boxed{\ \ コ\ \ }\sqrt{\boxed{\ \ サ\ \ }}であり、\overrightarrow{ OQ }=t\ \overrightarrow{ OP }+(1-t)\ \overrightarrow{ OC }\\
とおくと、tはt^2-t+\sqrt{\boxed{\ \ シ\ \ }}-\boxed{\ \ ス\ \ }=0を満たす。
\end{eqnarray}
2021明治大学全統過去問
単元:
#数A#図形の性質#平面上のベクトル#周角と円に内接する四角形・円と接線・接弦定理#平面上のベクトルと内積#数学(高校生)#大学入試解答速報#数学#明治大学#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 辺の長さが2である正六角形ABCDEFがあり、点O,P,Qは次の条件を満たす。\\
・点Oは辺AB上にある。\\
・点Pは正六角形ABCDFの内部にある。\\
・点Qは線分CP上にある。\\
・三角形OCPと三角形OQFは共に正三角形である。\\
\\
(1)四角形OQPFに着目すると、\angle OFQ=\angle OPQより、\\
OQPFは円に内接する四角形なので、\angle OPF=\boxed{\ \ アイ\ \ }°とわかる。\\
\\
(2)AB //FCに着目すると、\triangle OCF=\boxed{\ \ ウ\ \ }\sqrt{\boxed{\ \ エ\ \ }}である。OC//FP\\
であることに着目すると、\triangle OCP=\triangle OCFなので、OC^2=\boxed{\ \ オ\ \ }とわかる。\\
また、OB=\sqrt{\boxed{\ \ カ\ \ }}-\boxed{\ \ キ\ \ }\ である。\\
\\
(3)OQ^2=OF^2=\boxed{\ \ クケ\ \ }-\boxed{\ \ コ\ \ }\sqrt{\boxed{\ \ サ\ \ }}であり、\overrightarrow{ OQ }=t\ \overrightarrow{ OP }+(1-t)\ \overrightarrow{ OC }\\
とおくと、tはt^2-t+\sqrt{\boxed{\ \ シ\ \ }}-\boxed{\ \ ス\ \ }=0を満たす。
\end{eqnarray}
2021明治大学全統過去問
\begin{eqnarray}
{\Large\boxed{3}} 辺の長さが2である正六角形ABCDEFがあり、点O,P,Qは次の条件を満たす。\\
・点Oは辺AB上にある。\\
・点Pは正六角形ABCDFの内部にある。\\
・点Qは線分CP上にある。\\
・三角形OCPと三角形OQFは共に正三角形である。\\
\\
(1)四角形OQPFに着目すると、\angle OFQ=\angle OPQより、\\
OQPFは円に内接する四角形なので、\angle OPF=\boxed{\ \ アイ\ \ }°とわかる。\\
\\
(2)AB //FCに着目すると、\triangle OCF=\boxed{\ \ ウ\ \ }\sqrt{\boxed{\ \ エ\ \ }}である。OC//FP\\
であることに着目すると、\triangle OCP=\triangle OCFなので、OC^2=\boxed{\ \ オ\ \ }とわかる。\\
また、OB=\sqrt{\boxed{\ \ カ\ \ }}-\boxed{\ \ キ\ \ }\ である。\\
\\
(3)OQ^2=OF^2=\boxed{\ \ クケ\ \ }-\boxed{\ \ コ\ \ }\sqrt{\boxed{\ \ サ\ \ }}であり、\overrightarrow{ OQ }=t\ \overrightarrow{ OP }+(1-t)\ \overrightarrow{ OC }\\
とおくと、tはt^2-t+\sqrt{\boxed{\ \ シ\ \ }}-\boxed{\ \ ス\ \ }=0を満たす。
\end{eqnarray}
2021明治大学全統過去問
投稿日:2021.09.19