福田のわかった数学〜高校2年生054〜領域(9)領域と最大最小(5) - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生054〜領域(9)領域と最大最小(5)

問題文全文(内容文):
数学$\textrm{II}$ 領域(9) 両機と最大最小(5)
$x^2+y^2 \leqq 10,\ y \leqq 3x$のとき、
$\frac{y+4}{x+3}$
の最大値、最小値を求めよ。
単元: #数Ⅱ#図形と方程式#点と直線#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 領域(9) 両機と最大最小(5)
$x^2+y^2 \leqq 10,\ y \leqq 3x$のとき、
$\frac{y+4}{x+3}$
の最大値、最小値を求めよ。
投稿日:2021.09.07

<関連動画>

福田の1.5倍速演習〜合格する重要問題097〜早稲田大学2020年度教育学部第4問〜曲線の通過範囲の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標平面上で、定数k>0に対し、曲線y=$\frac{k}{\sqrt{1+x^2}}$の0≦x≦1の部分を$C_k$とする。
(1)曲線$C_k$上の点と原点との距離の最大値$M(k)$を求めよ。
(2)原点を中心に曲線$C_k$を1回転させるとき、$C_k$が通る部分の面積$S(k)$を求めよ。

2020早稲田大学教育学部過去問
この動画を見る 

福田のわかった数学〜高校2年生052〜領域(7)領域と最大最小(3)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 領域(7) 領域と最大最小(3)
$x^2+y^2 \leqq 10, y \geqq 0$ のとき、
$2x-y$
の最大値と最小値を求めよ。
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第4問(2)〜線形計画法

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$(2)野菜Aには1個あたり栄養素$x_1$が8g、栄養素$x_2$が4g、栄養素$x_3$が2g
含まれ、野菜Bには1個あたり栄養素$x_1$が4g、栄養素$x_2$が6g、栄養素$x_3$
が6g含まれている。これら2種類の野菜をそれぞれ何個かずつ選んで
ミックスし野菜ジュースを作る。選んだ野菜は丸ごと全て用い、栄養素$x_1$
を42g以上、栄養素$x_2$を48g以上、栄養素$x_3$を30g以上含まれるように
したい。野菜Aの個数と野菜Bの個数の和をなるべく小さくしてジュース
を作るとき、野菜Aの個数a、野菜Bの個数bの組(a,\ b)は

$(a,\ b)=(\boxed{\ \ ヘ\ \ },\ \boxed{\ \ ホ\ \ }), (\boxed{\ \ マ\ \ },\ \boxed{\ \ ミ\ \ })$

である。ただし、 $\boxed{\ \ ヘ\ \ } \lt \boxed{\ \ マ\ \ }$とする。

2021上智大学文系過去問
この動画を見る 

【高校数学】 数B-54 空間における平面・直線の方程式②

アイキャッチ画像
単元: #数Ⅱ#平面上のベクトル#図形と方程式#点と直線#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次のような直線の方程式を媒介変数$t$を用いて表そう.

①点$(3,2,1)$を通り,$\overrightarrow{a}=(0,2,1)$に平行な直線

②2点$(5,8,-7),(6,-9,3)$を通る直線

③点$(2,-1,3)$を通り,ベクトル$(5,2,-2)$に平行な直線と,
平面$3x-2y=-4$との交点の座標を求めよう.
この動画を見る 

福田のわかった数学〜高校2年生053〜領域(8)領域と最大最小(4)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 領域(8) 領域と最大最小(4)
$2x+3y \geqq 9, 4x+y \leqq18, y \leqq 2$のとき、
$x^2+y^2$
の最大値、最小値を求めよ。
この動画を見る 
PAGE TOP