福田のわかった数学〜高校2年生048〜領域(3)線分と放物線が共有点をもつ条件 - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生048〜領域(3)線分と放物線が共有点をもつ条件

問題文全文(内容文):
数学$\textrm{II}$領域(3) 線分と放物線の関係

2点$A(1,\ 1),\ B(3,\ 6)$を結ぶ線分AB
(端点を除く)が放物線$y=x^2+ax+b$
と共有点をもつとき$(a,\ b)$の存在する
領域を図示せよ。
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$領域(3) 線分と放物線の関係

2点$A(1,\ 1),\ B(3,\ 6)$を結ぶ線分AB
(端点を除く)が放物線$y=x^2+ax+b$
と共有点をもつとき$(a,\ b)$の存在する
領域を図示せよ。
投稿日:2021.08.20

<関連動画>

筑波大 横国大 4次方程式 対数連立方程式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#対数関数#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#筑波大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
筑波大学過去問題
$f(x)=x^4+2x^2-4x+8$
(1)$(x^2+t)^2-f(x)=(px+q)^2$が恒等式になるような整数t,p,qの値を1組求めよ。
(2)$f(x)=0$のすべての解を求めよ。

横浜国立大学過去問題
連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
log_{2x}y+log_x2y=1 \\
log_2xy=1
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

立教大 複素数基本

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Z=\cos \dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\pi$
$a=Z+\dfrac{1}{Z}$
$b=Z^2+\dfrac{1}{Z^2}$
$c=Z^2+\dfrac{1}{Z^3}$
$a^3+b^3+c^3-3ab$の値を求めよ.

2021立教大過去問
この動画を見る 

練習問題52 慶応大学(2021) 最大値

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$0 \lt x,\ 0 \lt y:$実数
$0x^2+16y^2=144$をみたすとき$xy$の最大値を求めよ。

出典:2021年慶應義塾大学
この動画を見る 

福田の数学〜中央大学2023年理工学部第2問〜三角関数の近似値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (1)$\displaystyle\frac{\pi}{12}$≦$x$≦$\displaystyle\frac{\pi}{6}$のとき、関数$\displaystyle\frac{\sin x}{x}$は$\boxed{\ \ サ\ \ }$する。このことより、
$\displaystyle\frac{\pi}{12}$≦$x$≦$\displaystyle\frac{\pi}{6}$では$\boxed{\ \ シ\ \ }$≦$\displaystyle\frac{\sin x}{x}$≦$\boxed{\ \ シ\ \ }$+0.05 が成り立つ。
$\boxed{\ \ サ\ \ }$の解答群
ⓐ 区間$\displaystyle\frac{\pi}{12}$≦$x$≦$\displaystyle\frac{\pi}{6}$で増加 ⓑ区間$\displaystyle\frac{\pi}{12}$≦$x$≦$\displaystyle\frac{\pi}{6}$で減少
ⓒ区間$\displaystyle\frac{\pi}{12}$≦$x$≦$\displaystyle\frac{\pi}{8}$で増加し、区間$\displaystyle\frac{\pi}{8}$≦$x$≦$\displaystyle\frac{\pi}{6}$で減少
ⓓ区間$\displaystyle\frac{\pi}{12}$≦$x$≦$\displaystyle\frac{\pi}{8}$で減少し、区間$\displaystyle\frac{\pi}{8}$≦$x$≦$\displaystyle\frac{\pi}{6}$で増加
ⓔ区間$\displaystyle\frac{\pi}{12}$≦$x$≦$\displaystyle\frac{\pi}{2}$で増加し、区間$\displaystyle\frac{\pi}{2}$≦$x$≦$\displaystyle\frac{\pi}{6}$で減少
ⓕ区間$\displaystyle\frac{\pi}{12}$≦$x$≦$\displaystyle\frac{\pi}{2}$で減少し、区間$\displaystyle\frac{\pi}{2}$≦$x$≦$\displaystyle\frac{\pi}{6}$で増加

$\boxed{\ \ シ\ \ }$の解答群
ⓐ0.8 ⓑ0.85 ⓒ0.9 ⓓ0.95 ⓔ1 ⓕ1.05 ⓖ1.1 ⓗ1.15

(2)底面が正五角形PQRSTで、側面が正三角形である正五角錐をKとする。ただし、Kの各辺の長さを1とする。底面にはないKの頂点をAとし、線分PQの中点をMとする。また線分PSの長さは$\boxed{\ \ ス\ \ }$である。これより、$\cos\angle SAM$の値は
$\boxed{\ \ セ\ \ }$-0.025≦$\cos\angle SAM$<$\boxed{\ \ セ\ \ }$+0.025
を満たす。さらに、(1)の$\displaystyle\frac{\sin x}{x}$についての結果より、$\angle SAM$の大きさは
$\boxed{\ \ ソ\ \ }$-1.5°≦$\cos\angle SAM$<$\boxed{\ \ ソ\ \ }$+1.5°
を満たす。
なお、必要ならば$\sqrt 2$=1.41..., $\sqrt 3$=1.73..., $\sqrt 5$=2.23... を用いてよい。

$\boxed{\ \ ス\ \ }$の解答群
ⓐ$\sqrt 2$ ⓑ$\sqrt 3$ ⓒ$\sqrt 5$ ⓓ$\displaystyle\frac{1+\sqrt 2}{2}$ 
ⓔ$\displaystyle\frac{1+\sqrt 3}{2}$ ⓕ$\displaystyle\frac{1+\sqrt 5}{2}$ ⓖ$\displaystyle\frac{\sqrt 2+\sqrt 3}{2}$ ⓗ$\displaystyle\frac{\sqrt 2+\sqrt 5}{2}$ 
ⓘ$\displaystyle\frac{\sqrt 3+\sqrt 5}{2}$ ⓙ$\displaystyle\frac{\sqrt 2+\sqrt 3}{3}$ ⓚ$\displaystyle\frac{\sqrt 2+\sqrt 5}{3}$ ⓛ$\displaystyle\frac{\sqrt 3+\sqrt 5}{3}$
 
$\boxed{\ \ セ\ \ }$の解答群
ⓐ-0.4 ⓑ-0.35 ⓒ-0.3 ⓓ-0.25 ⓔ-0.2 ⓕ-0.15 ⓖ-0.1 

$\boxed{\ \ ソ\ \ }$の解答群
ⓐ105° ⓑ108° ⓒ111° ⓓ114° ⓔ117° ⓕ120° 
この動画を見る 

福田のおもしろ数学056〜折り返し問題〜半円を折り返す

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#方べきの定理と2つの円の関係#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
図は半円 O を点 C で接するように折り返したもので EF はその折り目である。EF と AB の交点を D とする。 $AC = 6 , BC = 2$ のとき、 AD の長さを求めよ。
※図は動画内参照
この動画を見る 
PAGE TOP