福田の数学〜慶應義塾大学2021年経済学部第1問〜2つの円に同時に外接する円の条件 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年経済学部第1問〜2つの円に同時に外接する円の条件

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 座標平面上の原点を中心とする半径2の円をC_1、中心の座標が(7,0)、半径3\\
の円をC_2とする。さらにrを正の実数とするとき、C_1とC_2に同時に外接する円で、\\
その中心の座標が(a,b)、半径がrであるものをC_3とする。ただし、2つの円が\\
外接するとは、それらが1点を共有し、中心が互いの外部にあるときをいう。\\
\\
(1)rの最小値は\boxed{\ \ ア\ \ }であり、aの最大値は\boxed{\ \ イ\ \ }となる。\\
\\
(2)aとbは関係式b^2=\boxed{\ \ ウエ\ \ }(a+\boxed{\ \ オカ\ \ })(a-4)を満たす。\\
\\
(3)C_3が直線x=-3に接するとき、a=\frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケ\ \ }}, |b|=\frac{\sqrt{\boxed{\ \ コサシ\ \ }}}{\boxed{\ \ ス\ \ }}である。\\
\\
(4)点(a,b)と原点を通る直線と、点(a,b)と点(7,0)を通る直線が直交するとき、\\
|b|=\frac{\boxed{\ \ セソ\ \ }}{\boxed{\ \ タ\ \ }}となる。
\end{eqnarray}

2021慶應義塾大学経済学部過去問
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 座標平面上の原点を中心とする半径2の円をC_1、中心の座標が(7,0)、半径3\\
の円をC_2とする。さらにrを正の実数とするとき、C_1とC_2に同時に外接する円で、\\
その中心の座標が(a,b)、半径がrであるものをC_3とする。ただし、2つの円が\\
外接するとは、それらが1点を共有し、中心が互いの外部にあるときをいう。\\
\\
(1)rの最小値は\boxed{\ \ ア\ \ }であり、aの最大値は\boxed{\ \ イ\ \ }となる。\\
\\
(2)aとbは関係式b^2=\boxed{\ \ ウエ\ \ }(a+\boxed{\ \ オカ\ \ })(a-4)を満たす。\\
\\
(3)C_3が直線x=-3に接するとき、a=\frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケ\ \ }}, |b|=\frac{\sqrt{\boxed{\ \ コサシ\ \ }}}{\boxed{\ \ ス\ \ }}である。\\
\\
(4)点(a,b)と原点を通る直線と、点(a,b)と点(7,0)を通る直線が直交するとき、\\
|b|=\frac{\boxed{\ \ セソ\ \ }}{\boxed{\ \ タ\ \ }}となる。
\end{eqnarray}

2021慶應義塾大学経済学部過去問
投稿日:2021.07.05

<関連動画>

3通りで解説!!因数分解 日比谷高校

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$(6-x)^2+9(x-6)-90$

日比谷高等学校
この動画を見る 

福田の数学〜神戸大学2023年文系第1問〜2次方程式の解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ $a$, $b$を実数とする。整式$f(x)$を$f(x)$=$x^2$+$ax$+$b$で定める。以下の問いに答えよ。
(1)2次方程式$f(x)$=0 が異なる2つの正の解をもつための$a$と$b$が満たすべき必要十分条件を求めよ。
(2)2次方程式$f(x)$=0 が異なる2つの実数解をもち、それらが共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲を$ab$平面上に図示せよ。
(3)2次方程式$f(x)$=0 の2つの解の実部が共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲を$ab$平面上に図示せよ。ただし、2次方程式の重解は2つと数える。

2023神戸大学文系過去問
この動画を見る 

たすきがけの因数分解の裏技~学校では教えてくれない~

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

【わかりやすく解説】三角方程式(高校数学Ⅰ/三角比)

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$の時、次の等式を満たす$\theta$の値を求めよ
(1)$2\sin\theta=1$
(2)$2\cos\theta=-1$
(3)$\sqrt{ 3 }\tan\theta-1=0$
(4)$\cos\theta=0$
この動画を見る 

福田のわかった数学〜高校1年生038〜三角比、簡単な測量

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 三角比、簡単な測量\\
山の高さを測るために図の2地点A,B(※動画参照)から\\
仰角を測るとそれぞれ\alpha,\betaであった。\\
AB=xとすると、山の高さはいくらか。
\end{eqnarray}
この動画を見る 
PAGE TOP