福田の数学〜早稲田大学2021年人間科学部第4問〜領域における最大最小 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2021年人間科学部第4問〜領域における最大最小

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} 不等式(x-6)^2+(y-4)^2 \leqq 4 の表す領域を点P(x,y)が動くものとする。\\
このとき、x^2+y^2の最大値は\boxed{\ \ タ\ \ }+\boxed{\ \ チ\ \ }\sqrt{\boxed{\ \ ツ\ \ }}、\frac{y}{x}の最小値は\frac{\boxed{\ \ テ\ \ }-\sqrt{\boxed{\ \ ト\ \ }}}{\boxed{\ \ ナ\ \ }}、\\
x+yの最大値は\boxed{\ \ ニ\ \ }+\boxed{\ \ ヌ\ \ }\sqrt{\boxed{\ \ ネ\ \ }} となる。
\end{eqnarray}

2021早稲田大学人間科学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} 不等式(x-6)^2+(y-4)^2 \leqq 4 の表す領域を点P(x,y)が動くものとする。\\
このとき、x^2+y^2の最大値は\boxed{\ \ タ\ \ }+\boxed{\ \ チ\ \ }\sqrt{\boxed{\ \ ツ\ \ }}、\frac{y}{x}の最小値は\frac{\boxed{\ \ テ\ \ }-\sqrt{\boxed{\ \ ト\ \ }}}{\boxed{\ \ ナ\ \ }}、\\
x+yの最大値は\boxed{\ \ ニ\ \ }+\boxed{\ \ ヌ\ \ }\sqrt{\boxed{\ \ ネ\ \ }} となる。
\end{eqnarray}

2021早稲田大学人間科学部過去問
投稿日:2021.06.19

<関連動画>

大学入試問題#884「ミスれん」 #東京理科大学(2022) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x-4}{2x^2+5x+2}$ $dx$

出典:2022年東京理科大学
この動画を見る 

韓国数学オリンピック 例の解法

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式の計算(整式・展開・因数分解)#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 2^x+3^x-4^x+6^x-9^x=1$
実数解を全て求めよ.

韓国数学オリンピック過去問
この動画を見る 

福田の1日1題わかった数学〜高校2年生第2回〜高次方程式と整数解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 高次方程式
3次方程式$x^3-7x+n=0$ が
3つの整数解をもつように、
$n$の値を定めよ。
この動画を見る 

大阪市立(医)微分 接線と交点

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-4x^3+4x^2+1$
点$P(t,f(t))$における接点が$f(x)$と点$P$以外の異なる2点で交わる$t$の範囲は?

出典:大阪市立大学 医学部医学科 過去問
この動画を見る 

群馬大(医)

アイキャッチ画像
単元: #数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$log_{5832}n$が有理数で$\displaystyle \frac{1}{2} \lt log_{5832}n \lt 1$である自然数$n$を求めよ

出典:群馬大学医学部 過去問
この動画を見る 
PAGE TOP