【等比数列の和はこれで一撃!】等比数列の和の公式は覚えなくていいです〔数学、高校数学〕 - 質問解決D.B.(データベース)

【等比数列の和はこれで一撃!】等比数列の和の公式は覚えなくていいです〔数学、高校数学〕

問題文全文(内容文):
5,10,20,40,80$\cdots$
で表される等比数列の第n項までの和を求めよ。
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
5,10,20,40,80$\cdots$
で表される等比数列の第n項までの和を求めよ。
投稿日:2022.06.01

<関連動画>

【数学B/数列】an+1=pan+q型の漸化式(特性方程式)

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次のように定義される数列{$a_n$}の一般項$a_n$を求めよ。
$a_1=2,$  $a_{n+1}=3a_n-2$
この動画を見る 

福田のおもしろ数学220〜二項係数のシグマ計算

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\sum^{20}_{k=5} {}_{k}\mathrm{C}_{4}$ を計算して下さい。
この動画を見る 

【数B】【数列】数学的帰納法4 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
条件$a_1=3,{a_n}^2=(n+1)a_{n+1}+1$
によって定められる数列$\{a_n\}$がある。
(1) $a_2,a_3,a_4$を求めよ。
(2) 第$n$項$a_n$を推測して、
その結果を数学的帰納法によって証明せよ。
この動画を見る 

漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=3$
$a_{n+1}=3a_{n}+6n^2-12n+2$
一般項を求めよ

出典:大阪工業大学 過去問
この動画を見る 

【数B】数列:漸化式の基本を解説シリーズその5 分数型

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a_1=1,a_{n+1}=\dfrac{a_{n}}{3a_n+2}$で定められる数列{$a_n$}の一般項を求めよ。
この動画を見る 
PAGE TOP