素数が無限にあるユニークな証明 - 質問解決D.B.(データベース)

素数が無限にあるユニークな証明

問題文全文(内容文):
素数が無限にあるユニークな数の証明に関して解説していきます
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
素数が無限にあるユニークな数の証明に関して解説していきます
投稿日:2023.03.14

<関連動画>

福田の数学〜慶應義塾大学2023年薬学部第1問(7)〜n進法と割り算の余り

アイキャッチ画像
単元: #計算と数の性質#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (7)整数Zはn進法で表すとk+1桁であり、$n^k$の位の数が4、$n^i$ (1≦i≦k-1)の位の数が0、$n^0$の位の数が1となる。ただし、nはn≧3を満たす整数、kはk≧2を満たす整数とする。
(i)k=3とする。Zをn+1で割った時の余りは$\boxed{\ \ テ\ \ }$である。
(ii)Zがn-1で割り切れるときのnの値をすべて求めると$\boxed{\ \ ト\ \ }$である。

2023慶應義塾大学薬学部過去問
この動画を見る 

【高校数学】 数A-70 最大公約数・最小公倍数③

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$a$は自然数とする.
$a+5$は4の倍数であり,$a+3$は6の倍数であるとき,
$a+9$は12の倍数であることを証明しよう.

②和が72,最大公約数が12である
2つの自然数$a,b(a\lt b)$の組をすべて求めよう.
この動画を見る 

大阪市立大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#数B#大阪市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
20216大阪市立大学過去問題
x,y整数 n自然数
$x^2+y^2$が$3^{2n-1}$の倍数ならx,yともに$3^n$の倍数であることを示せ
①n=1のとき
②n=2のとき
③すべての自然数n
この動画を見る 

2021富山大 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P\gt 3$,$P$と$P+4$は素数である.
(1)$P$を6で割った余りを示せ.
(2)$P+2$は3の倍数であることを示せ.
(3)$(P+1)(P+2)(P+3)$は$120$の倍数であることを示せ.

2021富山大過去問
この動画を見る 

20和歌山県教員採用試験(数学:5番 整数問題)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}$

$x^2-7x+5=0$の2つの解を$\alpha,\beta$とする.
$\alpha^n+\beta^n-7^n$は
5の倍数であることを示せ.
この動画を見る 
PAGE TOP