数学オリンピック 予選簡単問題 6000の約数、平方数でないものの個数 - 質問解決D.B.(データベース)

数学オリンピック 予選簡単問題 6000の約数、平方数でないものの個数

問題文全文(内容文):
数学オリンピック予選
超簡単問題
6000の正の約数で平方数でないものは何個か。
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
数学オリンピック予選
超簡単問題
6000の正の約数で平方数でないものは何個か。
投稿日:2018.09.23

<関連動画>

整数問題 九州大

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$n$が偶数なら$2^n-1$は3の倍数を示せ.
(2)$2^m+1$と$2^m-1$は互いに素($m$は自然数)を示せ.
(3)$p,q$は異なる素数$2^{p-1}-1=pq^2$である.
$(p,q)$をすべて求めよ.

2015九州大過去問
この動画を見る 

3乗根のはずし方 類題 一橋大 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha =\sqrt[ 3 ]{ 10+6\sqrt{ 3 } },\beta=\sqrt[ 3 ]{ 10-6\sqrt{ 3 } }$

(1)
$\alpha+\beta$

(2)
$\alpha^n+\beta^n$は自然数であることを示せ。($n$自然数)

出典:一橋大学 過去問
この動画を見る 

【数A】整数の性質:関西学院大学 背理法の利用

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#関西学院大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
pを整数とする。
方程式$x^2+4x-5p+2=0$を満足する整数xは存在しないことを証明せよ。
この動画を見る 

数のいれかえ 東海高校(改)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
ある2つの位の数をいれかえるともとの整数より90大きくなる。
このような3ケタの自然数は何個ある?

東海高等学校(改)
この動画を見る 

福田の1.5倍速演習〜合格する重要問題066〜九州大学2017年度理系第3問〜等差数列の7の倍数になる項の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 初項$a_1=1$, 公差4の等差数列$\left\{a_n\right\}$を考える。以下の問いに答えよ。
(1) $\left\{a_n\right\}$の初項から第600項のうち、7の倍数である項の個数を求めよ。
(2) $\left\{a_n\right\}$の初項から第600項のうち、$7^2$の倍数である項の個数を求めよ。
(3) 初項から第n項までの積$a_1a_2\cdots a_n$が$7^{45}$の倍数となる最小の自然数nを求めよ。

2017九州大学理系過去問
この動画を見る 
PAGE TOP