福田の1.5倍速演習〜合格する重要問題016〜京都大学2016年度理系数学第2問〜素数の性質 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題016〜京都大学2016年度理系数学第2問〜素数の性質

問題文全文(内容文):
素数p,qを用いて
$p^q+q^p$
と表される素数を全て求めよ。

2016京都大学理系過去問
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学的帰納法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
素数p,qを用いて
$p^q+q^p$
と表される素数を全て求めよ。

2016京都大学理系過去問
投稿日:2022.12.01

<関連動画>

慶應商 式の証明 高校数学 Mathematics Japanese university entrance exam Keio University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は正の整数
$\sqrt{ 3 }$は$\displaystyle \frac{a}{b}$と$\displaystyle \frac{a+3b}{a+b}$の間にあることを示せ

出典:慶應商学部 問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題014〜東京大学2016年度理系数学第1問〜eの定義と不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
eを自然対数の底、すなわち$e=\lim_{t \to \infty}\left(1+\frac{1}{t}\right)^t$とする。
すべての正の実数xに対し、次の不等式が成り立つことを示せ。
$\left(1+\frac{1}{x}\right)^x \lt e \lt \left(1+\frac{1}{x}\right)^{x+\frac{1}{2}}$

2016東京大学理系過去問
この動画を見る 

00兵庫県教員採用試験(数学:4番 対数)

アイキャッチ画像
単元: #数Ⅱ#式と証明#図形と方程式#指数関数と対数関数#恒等式・等式・不等式の証明#軌跡と領域#対数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
4⃣$log_xy+2log_yx \leqq 3$
をみたす(x,y)の存在する領域を図示せよ
この動画を見る 

福田のおもしろ数学417〜条件付きの不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

数列$\{a_n\}$が$a_1=0,a_2=1$

$a_n=5a_{n-1}-a_{n-2} \quad (n \geqq 3)$

を満たしている。

$a_n$が

(1)$5$で割り切れる

(2)$15$で割り切れる

となる$n$を求めて下さい。
   
この動画を見る 

福田のおもしろ数学439〜整数変数の分数式が整数となる条件

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$m,n$が整数であるとき

$\dfrac{m^2+n^2}{mn}$

の取りうるすべての整数値を求めよ。
    
この動画を見る 
PAGE TOP