【数学Ⅱ】相加平均・相乗平均がクリアに理解できる動画 - 質問解決D.B.(データベース)

【数学Ⅱ】相加平均・相乗平均がクリアに理解できる動画

問題文全文(内容文):
$a \gt 0$のとき、$a+ \frac{1}{a} \geqq 2$を証明せよ。
また、等号が成立する場合を調べよ。
-----------------
$a>0,b>0$のとき、次の不等式を示せ。
また、等号成立条件を調べよ
$(a+ \frac{1}{b})(b+ \frac{16}{a})\geqq 25$
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
$a \gt 0$のとき、$a+ \frac{1}{a} \geqq 2$を証明せよ。
また、等号が成立する場合を調べよ。
-----------------
$a>0,b>0$のとき、次の不等式を示せ。
また、等号成立条件を調べよ
$(a+ \frac{1}{b})(b+ \frac{16}{a})\geqq 25$
投稿日:2018.08.19

<関連動画>

15和歌山県教員採用試験(数学:1-(6) 整式の剰余)

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(6)$

$x^{2015}$を$x^2+1$で割った余りを求めよ.


この動画を見る 

【高校数学】 数Ⅱ-15 恒等式④

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x+y=1$を満たすx,yについて、常に$ax^2+by+cx=2$が成り立つとき、定数a,b,cの値を求めよう。

②$x^2+ax^2-3x+b$を$(x-2)$で割ると、余りが$-11x+2$になるとき、定数a,bの値を求めよう。
この動画を見る 

成城大 ド・モアブル証明 6倍角の公式?

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#式と証明#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=\cos\theta+i\sin\theta$

(1)
$n$整数
$z^n=\cos n \theta + i \sin n \theta$を示せ

(2)
$z+\displaystyle \frac{1}{z}$を$\cos \theta$を用いて表せ

(3)
$\cos^6\theta$を$\cos2\theta,\cos4\theta,\cos6\theta$を用いて表せ

出典:2005年成城大学 過去問
この動画を見る 

【高校数学】  数Ⅱ-8  分数式の計算①

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎約分して既約分数にしよう。

①$\displaystyle \frac{8ax^2y^2}{48a^2xy^2}$

②$\displaystyle \frac{x^2-3x+2}{x^2-4x+3}$

③$\displaystyle \frac{4x^3+8xy^2}{12x^2}$

④$\displaystyle \frac{x^2-1}{x^3-1}$

◎計算しよう。

⑤$\displaystyle \frac{x}{x-1} \times \displaystyle \frac{x^2-1}{3x}$

⑥$\displaystyle \frac{x^2-x-6}{x^2+x} \times \displaystyle \frac{x^2-1}{x^2-5x+6}$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題082〜北海道大学2018年度理系第5問〜不等式の証明と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 2つの関数
f(x)=$\cos x$, g(x)=$\displaystyle\sqrt{\frac{\pi^2}{2}-x^2-\frac{\pi}{2}}$
がある。
(1)0≦x≦$\frac{\pi}{2}$のとき、不等式$\frac{2}{\pi}x$≦$\sin x$が成り立つことを示せ。
(2)0≦x≦$\frac{\pi}{2}$のとき、不等式g(x)≦f(x)が成り立つことを示せ。
(3)0≦x≦$\frac{\pi}{2}$の範囲において、2つの曲線y=f(x), y=g(x)およびy軸が囲む部分の面積を求めよ。

2018北海道大学理系過去問
この動画を見る 
PAGE TOP