【数Ⅱ】図形と方程式:横浜国立大2019年(理系)第4問の解説 - 質問解決D.B.(データベース)

【数Ⅱ】図形と方程式:横浜国立大2019年(理系)第4問の解説

問題文全文(内容文):
横浜国立大(理系)
2019年度(前期)第4問

Oを原点とするxy平面上に2点A(2,0)、B(0,2)がある。2点P、Qは以下の条件を満たしながら動く。
・Pは線分OA上にある。
・Qは線分OB上にある。
・△OPQの面積は1である。
点Pの座標を(t,0)とする。
(1)tの取りうる値の範囲を求めよ。
(2)tが(1)で求めた範囲を動くとき、線分PQが通過する領域をxy平面上に図示せよ。
チャプター:

0:00 オープニング
1:00 (1)の解説
2:05 (2)を解くためのポイント
4:11 (2)の場合分け

単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
横浜国立大(理系)
2019年度(前期)第4問

Oを原点とするxy平面上に2点A(2,0)、B(0,2)がある。2点P、Qは以下の条件を満たしながら動く。
・Pは線分OA上にある。
・Qは線分OB上にある。
・△OPQの面積は1である。
点Pの座標を(t,0)とする。
(1)tの取りうる値の範囲を求めよ。
(2)tが(1)で求めた範囲を動くとき、線分PQが通過する領域をxy平面上に図示せよ。
投稿日:2021.12.02

<関連動画>

大学入試問題#467「基本すぎる極限問題」 電気通信大学(2013) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{(1-\cos2x)\sin3x}{x^3}$

出典:2013年電気通信大学 入試問題
この動画を見る 

大学入試問題#453「落とせない問題」 信州大学(2022) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#対数関数#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{e}^{e^2} \displaystyle \frac{dx}{x(1+log\ x^3)log\ x}$

出典:2022年信州大学 入試問題
この動画を見る 

指数対数 数Ⅱ 指数計算の基本2【ゆう☆たろうがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
a>0, $a^{2x}=5$のとき,$(a^{4x}-a^{-4x})÷(a^x-a^{-x})$の値を求めよ
$2^x-2^{-x}=3$のとき,$2^x+2^{-x}$の値を求めよ
地球と太陽の距離を$1.5×10^{11}$m,光の進む速さを毎秒$3.0×10^8$mとする。このとき,光が太陽から地球まで到達するには何秒かかるか
この動画を見る 

【数Ⅱ】三角関数:置換したときの解の個数を考える

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
教材: #チャート式#黄チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$0\leqq\theta\lt2\pi$のとき、$\sin^2\theta-\sin\theta=a$ この方程式の解の個数を実数aの値で場合分けして求めよ
この動画を見る 

数学の魔術師ヨビノリのたくみさん5度目の登場 東大入試問題 Mathematics Japanese university entrance examTokyo University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
国立大学法人東京大学

$y=x^2$上に$P,Q$がある
線分$PQ$の中点の$y$座標を$h$
$(1)PQ$の長さ$L$と傾き$m$で$h$を表せ
$(2)L$を固定したときの$h$の最小値
この動画を見る 
PAGE TOP