佐賀県立高校入試2022年5⃣相似(4)~(6) - 質問解決D.B.(データベース)

佐賀県立高校入試2022年5⃣相似(4)~(6)

問題文全文(内容文):
佐賀県立高校入試2022年5⃣相似(4)~(6)
-----------------
動画内の図のように、半径が5cmの円Oと、半径が円Oの半径よりも短い円O'があり、円O'の中心は円Oの周上にある。
2つの円の交点をA、Bとし、AB=6cmとする。
円Oの周上に線分ACが円Oの直径となるように点Cをとり、直線CBと円O'との交点のうち点Bと異なる点をDとする。
また、円O'の周上にAE=6cmとなるように点Eをとり、直線EBと円Oとの交点のうち点Bと異なる点をFとする。ただし、点Eは点Bと異なる点とする。

(4) 線分ADの長さを求めなさい。

(5) 線分EFの長さを求めなさい。

(6) △AFEの面積を求めなさい。
単元: #数学(中学生)#中3数学#相似な図形#高校入試過去問(数学)#佐賀県立高校
指導講師: 重吉
問題文全文(内容文):
佐賀県立高校入試2022年5⃣相似(4)~(6)
-----------------
動画内の図のように、半径が5cmの円Oと、半径が円Oの半径よりも短い円O'があり、円O'の中心は円Oの周上にある。
2つの円の交点をA、Bとし、AB=6cmとする。
円Oの周上に線分ACが円Oの直径となるように点Cをとり、直線CBと円O'との交点のうち点Bと異なる点をDとする。
また、円O'の周上にAE=6cmとなるように点Eをとり、直線EBと円Oとの交点のうち点Bと異なる点をFとする。ただし、点Eは点Bと異なる点とする。

(4) 線分ADの長さを求めなさい。

(5) 線分EFの長さを求めなさい。

(6) △AFEの面積を求めなさい。
投稿日:2023.02.08

<関連動画>

三平方の定理❓相似❓B

アイキャッチ画像
単元: #数学(中学生)#中3数学#相似な図形#三平方の定理
指導講師: 数学を数楽に
問題文全文(内容文):
xy=?
*図は動画内参照
この動画を見る 

【テスト対策 中3】6章-3

アイキャッチ画像
単元: #数学(中学生)#中3数学#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎右の図で、点$A~E$は円周上の5等分点である。
このとき、次の角度を求めなさい。
ただし、求める角度は$180°$より小さいものとする。

①$\angle COD$
②$\angle CAD$
③$\angle BOD$
④$\angle CAE$

図は動画内参照
この動画を見る 

相似 三平方の定理 芝浦工大柏

アイキャッチ画像
単元: #数学(中学生)#中3数学#相似な図形#三平方の定理#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
四角形ABCDは正方形
EF=?
*図は動画内参照

芝浦工業大学柏高等学校
この動画を見る 

2通りで解説!!良問 玉川学園

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$(x+3)(x^2-x-6)(x-2)$を展開せよ

玉川学園
この動画を見る 

【高校受験対策/数学】死守63

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#連立方程式#平方根#2次方程式#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守63


下の図1は、ある都市のある日の天気と気温であり、表示の気温は最高気温と最低気温を表している。
また、[ ]の中の数はある日の最高気温と最低気温が、前日の最高気温と最低気温に比べて何℃高いかを表している。
このときこの都市の前日の最低気温を求めなさい。
※図は動画参照


右上の図2の正方形の面積は50c㎡である。このとき、正方形の1辺の長さを求めなさい。
ただし、根号の中の数はできるだけ小さい自然数にすること。


1枚$a$ gの封筒に、1枚$b$ gの便せんを5枚入れて重さをはかったところ、60gより重かった。
この数量の関係を不等式で表しなさい。



ある店で、ポロシャツとトレーナーを1着ずつ定価で買うと、代金の合計は6300円である。
今日はポロシャツが定価の2割引き、トレーナーが定価より800円安くなっていたため、それぞれ1着ずう買うと、代金の合計は5000円になるという。
このとき、ポロシャツとトレーナーの定価をそれぞれ求めなさい。
ただし、消費税は考えないものとする。


下の図のように、正五角形ABCDEがあり、点Pは はじめに頂点Aの位置にある。
1から6までの目のある2個のさいころを同時に1回投げて、出た目の数の和だけ、点Pは左回りに頂点を順に1つずつ 移動する。
例えば、2個のさいころの出た目の数の和が3のときは、点Pは頂点Dの位置に移動する。
2個のさいころを同時に1回投げるとき、 点Pが頂点Eの位置に移動する確率を求めなさい。
ただし、それぞれのさいころにおいて、1から6までのどの目が出ることも同様に確からしいとする。
この動画を見る 
PAGE TOP