【数学II】三角関数_これで共テ瞬殺!【三角関数のイメージ】【共通テスト】 - 質問解決D.B.(データベース)

【数学II】三角関数_これで共テ瞬殺!【三角関数のイメージ】【共通テスト】

問題文全文(内容文):
(1)
$0^{ \circ } \lt \theta \lt 180^{ \circ }$
$\tan \theta =-2$
$\sin \theta,\cos \theta$は?

(2)
$0 \leqq \theta \lt 2 \pi$
$\cos \theta \lt \displaystyle \frac{\sqrt{ 3 }}{2}$を解け

(3)
$0 \lt \theta \leqq 2 \pi$
$\sin \theta \geqq \displaystyle \frac{1}{2}$を解け

(4)
$0 \leqq \theta \lt 2 \pi$
$\sin \theta + \sqrt{ 3 } \cos \theta =\sqrt{ 2 }$を解け

(5)
$0 \leqq x \leqq \pi$とする
$y=2 \sin 2x-2(\sin x- \cos x)+1$
のとり得る値の範囲は?

(6)
$f(x)=\sin x - \cos 2x$の
$0 \leqq x \leqq \pi$における
max、minを求めよ
単元: #三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
(1)
$0^{ \circ } \lt \theta \lt 180^{ \circ }$
$\tan \theta =-2$
$\sin \theta,\cos \theta$は?

(2)
$0 \leqq \theta \lt 2 \pi$
$\cos \theta \lt \displaystyle \frac{\sqrt{ 3 }}{2}$を解け

(3)
$0 \lt \theta \leqq 2 \pi$
$\sin \theta \geqq \displaystyle \frac{1}{2}$を解け

(4)
$0 \leqq \theta \lt 2 \pi$
$\sin \theta + \sqrt{ 3 } \cos \theta =\sqrt{ 2 }$を解け

(5)
$0 \leqq x \leqq \pi$とする
$y=2 \sin 2x-2(\sin x- \cos x)+1$
のとり得る値の範囲は?

(6)
$f(x)=\sin x - \cos 2x$の
$0 \leqq x \leqq \pi$における
max、minを求めよ
投稿日:2022.09.03

<関連動画>

福田のわかった数学〜高校2年生071〜三角関数(10)三角方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(10) 解の個数\hspace{120pt}\\
\\
3\cos^2x-\sin x-a=0\hspace{100pt}\\
の0 \leqq x \leqq \frac{3\pi}{2}の範囲にある解の個数を、実数aの値によって分類せよ。
\end{eqnarray}
この動画を見る 

東北大 三角方程式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$0 \leqq x \lt 2\pi$方程式を解け

(1)
$\sin^3x+\cos^3x=1$

(2)
$\sin^3x+\cos^3x+\sin x=2$

出典:2007年東北大学 過去問
この動画を見る 

【高校数学】三角関数のグラフの裏技~平行移動の場合~【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
グラフを書け
1⃣
$y=\sin \theta+1$

2⃣
$y=2\sin(2\theta-\displaystyle \frac{\pi}{3})+1$
この動画を見る 

19奈良県教員採用試験(数学:2番 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#接線と増減表・最大値・最小値#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
2⃣$0 \leqq θ \leqq \pi$
$y= sin2θ + 2(sinθ+cosθ)-i$のMAX、minとそのときのθの値を求めよ。
この動画を見る 

【数Ⅱ】三角関数:解が三角関数で表される2次方程式:p>0とする。xの方程式4x²+2(1-p)x-p=0の解が、sinθとcosθ(0≦θ<2π)であるとき、pとθの値を求めよう。

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
解が三角関数で表される2次方程式:p>0とする。xの方程式$4x^2+2(1-p)x-p=0$の解が、$sinθ$と$cosθ(0≦θ<2\pi)$であるとき、$p$と$\theta$の値を求めよう。
この動画を見る 
PAGE TOP