神戸大 三次方程式の解 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

神戸大 三次方程式の解 Mathematics Japanese university entrance exam

問題文全文(内容文):
$f(x)=x^3-3x+1,g(x)=x^2-2$
方程式$f(x)=0$について以下を示せ
(1)$f(x)=0$は絶対値2未満の相違3実根をもつ
(2)$a$が$f(x)=0$の解なら$g(a)$も$f(x)=0$の解である
(3)$f(x)=0$の解を小さい順に$a_{1} \lt a_{2} \lt a_{3}$とすると$g(a_{1})=a_{3},g(a_{2})=a_{1},g(a_{3})=a_{2}$

出典:神戸大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-3x+1,g(x)=x^2-2$
方程式$f(x)=0$について以下を示せ
(1)$f(x)=0$は絶対値2未満の相違3実根をもつ
(2)$a$が$f(x)=0$の解なら$g(a)$も$f(x)=0$の解である
(3)$f(x)=0$の解を小さい順に$a_{1} \lt a_{2} \lt a_{3}$とすると$g(a_{1})=a_{3},g(a_{2})=a_{1},g(a_{3})=a_{2}$

出典:神戸大学 過去問
投稿日:2019.01.11

<関連動画>

【数Ⅱ】【複素数と方程式】2次方程式の解と判別式4 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
pを実数とする。次の2次方程式の解の1つが[ ]内の数であるとき、他の解を求めよ。また、定数pの値を求めよ。
(1) $2x^2+10x+p=0$ $[\displaystyle \frac{1}{2}
] $
(2)$x^2+px+4=0$ $[1+\sqrt{3}i]$

2次方程式$x^2-2x+7=0$の2つの解をα,βとするとき、次の2数を解とする2次方程式を作れ。
(1) α+2,β+2
(2) -2α, -2β
(3) α², β²

2次方程式$x^2-5x+5=0$は異なる2つの実数解をもつ。2つの実数解の小数部分を解とする2次方程式を作れ。
この動画を見る 

できるように作られた因数分解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 36x^4+24x^3+67x^2+24x+36$
これを因数分解せよ.
この動画を見る 

16和歌山県教員採用試験(数学:2番 解と係数の関係)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$
$a,b$は実数とする.
$x^3+6ax+b=0$が$a-3i$を解にもつとき,
$a,b$の値とそのときの実数解を求めよ.
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第1問(1)〜指数方程式と常用対数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#対数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)$s$を正の実数として、$x,y$の連立方程式
$\left\{
\begin{array}{1}
4^x+9^y=5\\
2^x・3^y=s\\
\end{array}
\right.$
を考える。以下では$\log_{10}2=0.301,$
$\log_{10}3=0.4771$として計算せよ。

$(\textrm{a})$この連立方程式の解が2組あるための必要十分条件は

$0 \lt s \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$
である。

$(\textrm{b})\ s=2$のとき$x \lt y$となる解を$(x_0,\ y_0)$とする。
$y_0$を小数第3位で四捨五入した数の整数部分は$\boxed{\ \ ウ\ \ }$、
小数第1位は$\boxed{\ \ エ\ \ }$、小数第2位は$\boxed{\ \ オ\ \ }$である。

2021上智大学文系過去問
この動画を見る 

【高校数学】特性方程式の漸化式~分かりやすく丁寧に~3-18【数学B】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数列#漸化式#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
特性方程式の漸化式
分かりやすく丁寧に解説していきます。
この動画を見る 
PAGE TOP