兵庫医科大 3項間漸化式 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

兵庫医科大 3項間漸化式 Mathematics Japanese university entrance exam

問題文全文(内容文):
$a_{1}=1$ $a_{2}=4$
$a_{n+2}=4a_{n+1}-3a_{n}-2$
一般項を求めよ

出典:2002年兵庫医科大学 過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#兵庫医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=1$ $a_{2}=4$
$a_{n+2}=4a_{n+1}-3a_{n}-2$
一般項を求めよ

出典:2002年兵庫医科大学 過去問
投稿日:2019.02.13

<関連動画>

福田の数学〜一橋大学2025文系第5問〜確率漸化式と条件付き確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$5$点$A,B,C,D$が

下図のように線分で結ばれている。

点$P_1,P_2,P_3,\cdots $を次のように定めていく。

$P_1$を$A$とする。

正の整数$n$に対して、$P_n$を端点とする線分を

ひとつ無作為にえらび、その線分の$P_n$とは

異なる端点$P_{n+1}$とする。

(1)$P_n$が$A$または$B$である確率$p_n$を求めよ。

(2)$P_n$が$A$または$B$であるとき、

$k=1,2,\cdots ,n$のいずれに対しても$P_k=E$とは

ならない条件付き確率$q_n$を求めよ。

図は動画内参照

$2025$年一橋大学文系過去問題
この動画を見る 

数検準1級2次過去問(2番 数列)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数列#数列とその和(等差・等比・階差・Σ)#数学検定#数学検定準1級#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
2⃣ a,b,cは異なる実数
a,b,c,a,b,c,a,$\cdots$
で表される等比数列は存在しないことを示せ
この動画を見る 

大阪大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#大阪大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1$

$a_{n+1}\displaystyle \frac{na_n}{2+n(a_n+1)}$

一般項を求めよ

出典:大阪大学 過去問
この動画を見る 

慶應義塾大(経済)数列の最大値

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#慶應義塾大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2011慶應義塾大学過去問題
n=1,2,・・・100
$a_n=n3^n$・${}_{100} \mathrm{ C }_n$
$a_n$を最大にするnの値
この動画を見る 

数学「大学入試良問集」【13−5② 漸化式(デザイン型】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#滋賀大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a_1=2,a_{n+1=2a_n-2a_n-2n+1(n=1,2,・・・)}$によって定められる数列$\{a_n\}$について、次の問いに答えよ。

(1)
$b_n=a_n-(\alpha+\beta)$とおいて、数列$\{b_n\}$が等比数列になるように定数$\alpha,\beta$の値を定めよ。

(2)
一般項$a_n$を求めよ。

(3)
初項から第$n$項までの和$S_n=\displaystyle \sum_{k=1}^n a_k$を求めよ。
この動画を見る 
PAGE TOP