【数Ⅰ】数と式:分母にxを含む不等式 - 質問解決D.B.(データベース)

【数Ⅰ】数と式:分母にxを含む不等式

問題文全文(内容文):
次の不等式を解きなさい。
$\dfrac{1}{x-2} ≦ \dfrac{2}{x+3}$
チャプター:

0:00 オープニング
0:04 問題
1:40 ㊙計算術
3:40 3次不等式の解き方
5:57 まとめ

単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不等式を解きなさい。
$\dfrac{1}{x-2} ≦ \dfrac{2}{x+3}$
投稿日:2021.05.31

<関連動画>

【数A】【数と式】整数xが5個存在するようなaの値の範囲を求めよ。

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$7x-5 > 13-2x$
$x+a \geqq 3x+5$
整数$x$が5個存在するような$a$の値の範囲を求めよ。
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第5問〜三角比と空間図形の計量

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#空間図形#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
半径$4\sqrt2$の球面S上に3点A,B,Cがあり、線分AB,BC,CAの長さはそれぞれ$AB=4\sqrt6,BC=10,C=6$とする。
(1)$\cos\angle ABC=\boxed{\ \ テ\ \ }$である。平面ABCで球面Sを切った切り口の円をTとする。
Tの半径は$\boxed{\ \ ト\ \ }$である。点Dが円T上を動くとき、$\triangle DAB$の面積の最大値は
$\boxed{\ \ ナ\ \ }$である。
(2)球面Sの中心Oから平面ABCに下ろした垂線OHの長さは$\boxed{\ \ ニ\ \ }$である。
(3)点Eは球面S上を動くとき、三角錐EABCの体積の最大値は$\boxed{\ \ ヌ\ \ }$である。

2022慶應義塾大学理工学部過去問
この動画を見る 

佐賀大(医)無理数の証明

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2018年 佐賀大学医学部 過去問

①nが平方数でない自然数のとき、
$\sqrt{n}$は無理数であることを示せ。

②$a,b$は正の有理数、$m$は自然数のとき、
$a\sqrt{m}+b\sqrt{m + 1}$
は無理数であることを示せ。
この動画を見る 

2次式 連立方程式 国学院高校

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#数Ⅰ#2次関数#2次方程式と2次不等式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
x + 2y = 7 \\
(x-y)^2+2(x-y)-15 = 0
\end{array}
\right.
\end{eqnarray}
x=? y=?
(x<y)

國學院高等学校
この動画を見る 

図で理解する2次方程式の解の公式~ほーみんに数学教えてみた~

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
図で理解する2次方程式の解の公式~ほーみんに数学教えてみた~
この動画を見る 
PAGE TOP