筑波大 確率 - 質問解決D.B.(データベース)

筑波大 確率

問題文全文(内容文):
$2^n$人勝ち抜き戦
クジで2人ずつに分けて1回戦
勝者のみをクジで2人ずつに分けて2回戦
以下同じ

(1)
$A$が優勝する確率を求めよ

(2)
$A$と$B$が1回戦で戦う確率を求めよ

(3)
$A$と$B$が2回戦で戦う確率を求めよ

(4)
$A$と$B$が対戦する確率を求めよ

出典:1993年筑波大学 過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2^n$人勝ち抜き戦
クジで2人ずつに分けて1回戦
勝者のみをクジで2人ずつに分けて2回戦
以下同じ

(1)
$A$が優勝する確率を求めよ

(2)
$A$と$B$が1回戦で戦う確率を求めよ

(3)
$A$と$B$が2回戦で戦う確率を求めよ

(4)
$A$と$B$が対戦する確率を求めよ

出典:1993年筑波大学 過去問
投稿日:2019.10.05

<関連動画>

京大の確率の問題!解けますか?【数学 入試問題】【京都大学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
さいころを$n$個同時に投げるとき、出た目の数の和が$n+3$になる確率を求めよ。

京都大過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年環境情報学部第5問〜ジャンケンで勝者1人を決める確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{5}}$複数人でじゃんけんを何回か行い勝ち残った1人を決めることを考える。
最初は全員がじゃんけんに参加して始める。それぞれのじゃんけんでは、
そのじゃんけんの参加者がそれぞれグー、チョキ、パーのどれかを出し、
もし誰か1人が他の全員に買った場合にはその1人が商社となりじゃんけん
はそこで終了する。そうでない場合、全員が同じ手を出したか、グー、チョキ、
パーのそれぞれを誰かが出した場合には'あいこ'となり、そのじゃんけんの参加者全員が
次のじゃんけんに進む。上記以外で、2つの手に分かれた場合には、
負けた手を出した人を除いて勝った手を出した人だけが次のじゃんけんに進む。
このように、じゃんけんを繰り返し行い、1人の勝者が決まるまで続けるものとする。
ただし、じゃんけんの参加者全員、グー、チョキ、パーのどれかを等しい確率
で毎回ランダムに出すものとする。また通常のじゃんけんのように
グーはチョキに勝ち、チョキはパーに勝ち、パーはグーに勝つものとする。
(1)3人でじゃんけんを複数回行い1人の勝者を決める場合、1回目のじゃんけんで
勝者が決まる確率は$\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$であり、
ちょうど2回目のじゃんけんで勝者が決まる確率は$\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}$であり、
ちょうど3回目のじゃんけんで勝者が決まる確率は$\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}$である。

(2)4人でじゃんけんを複数回行い1人の勝者を決める場合、1回目のじゃんけんで
勝者が決まる確率は$\frac{\boxed{\ \ スセソ\ \ }}{\boxed{\ \ タチツ\ \ }}$であり、
ちょうど2回目のじゃんけんで勝者が決まる確率は$\frac{\boxed{\ \ テトナ\ \ }}{\boxed{\ \ ニヌネ\ \ }}$である。

2022慶應義塾大学環境情報学部過去問
この動画を見る 

福田の数学〜名古屋大学2025理系第4問〜コインを裏返す操作の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

コイン$①,\cdots,⑥$が下図のようにマス目の中に

置かれている。

これらのコインから無作為にひとつを選び、

選んだコインはそのままにし、

そのコインのあるマス目と

辺を共有して隣接するマス目のコインを裏返す

操作を考える。

例えば、①を選べば、②,④を裏返し、

②を選べば、①,③,⑤を繰り返す。

最初はすべてのコインが

表向きに置かれていたとする。

正の整数$n$に対し、

$n$回目の操作終了時点ですべてのコインが

裏向きである確率$p_n$とするとき、

以下の問いに答えよ。

(1)$p_2$を求めよ。

(2)コイン$①,\cdots,⑥$をグループ$A,B$に

分けることによって、

$n$回目の操作終了時点ですべてのコインが

裏向きであるための必要十分条件を

次の形に表すことができる。

図は動画内参照

$2025$年名古屋大学理系過去問題
この動画を見る 

福田の数学〜立教大学2024年経済学部第1問(3)〜3回のさいころの目の積が4の倍数となる確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
さいころを $3$ 回投げて出る目をすべてかけた数が $4$ の倍数となる確率は $\fbox{カ}$ である。
この動画を見る 

場合の数 集合の基本~ベン図を描こう~【さこすけ's サイエンスがていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$U={1,2,3,4,5,6,7,8,9}$を全体集合とする。Uの部分集合A,Bについて、
$A∩B={2}$,(Aの補集合)$∩B={2,4,6,8}$,(Aの補集合)$∩$(Bの補集合)$={1,9}$であるとき、次の集合を求めよ。
(1)$A∪B$       (2)$B$        (3)$A∩$(Bの補集合)

U={$x\vert 1\leqq x\leqq 10$,xは整数}を全体集合とする。Uの部分集合
$A={1,2,3,4,8},B={3,4,5,6},C={2,3,6,7}$について、次の集合を求めよ。
(1)$A∩B∩C$ (2)$A∪B∪C$ (3)$A∩B∩$(Cの補集合) (4)(Aの補集合)$∩B∩$(Cの補集合) (5)($A∩B∩C$の補集合) (6)$(A∪C)∩$(Bの補集合)

$A={1,3,3a-2},B={-5,a+2,a^2-2a+1},A∩B={1,4}$のとき、
定数aの値と和集合$A∪B$を求めよ
この動画を見る 
PAGE TOP