東大 積分 ヨビノリたくみ - 質問解決D.B.(データベース)

東大 積分 ヨビノリたくみ

問題文全文(内容文):
$0 \leqq t \leqq 2,x^4-2x^2-1+t=0$の実数解のうち
最大のもの:$g_1(t)$
最小のもの:$g_2(t)$

$\displaystyle \int_{0}^{2} (g_1(t)-g_2(t)) dx$

出典:1993年東京大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$0 \leqq t \leqq 2,x^4-2x^2-1+t=0$の実数解のうち
最大のもの:$g_1(t)$
最小のもの:$g_2(t)$

$\displaystyle \int_{0}^{2} (g_1(t)-g_2(t)) dx$

出典:1993年東京大学 過去問
投稿日:2019.11.25

<関連動画>

#筑波大学(2018) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} x^2\cos\ x\ dx$

出典:2018年筑波大学
この動画を見る 

【高校数学】数Ⅱ:微分法と積分法:定積分の計算(同じ積分範囲)【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の定積分を求めよ。
$\displaystyle \int_{-2}^{3}(2x^2+4x-3)dx-2 \int_{-2}^{3}(x^2+4x+3)dx$
この動画を見る 

#高専数学_12#定積分#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{1}{3x^2+1} dx$
この動画を見る 

【高校数学】 数Ⅱ-174 定積分と面積③

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①曲線$y=x^3-6x^2+8x$とx軸で囲まれた2つの部分の面積の和Sを求めよう。
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型文系第4問(3)〜線分の通過範囲の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ (3)$a$を定数とする。座標平面上の直線$y$=2$ax$+$\frac{1}{4}$と放物線$y$=$x^2$の2つの交点を$P_1$, $P_2$とする。$a$が0≦$a$≦1の範囲を動くとき、線分$P_1P_2$の通過する部分の面積は$\frac{\boxed{\ \ ル\ \ }}{\boxed{\ \ レ\ \ }}$である。
この動画を見る 
PAGE TOP