大阪大 整数問題 - 質問解決D.B.(データベース)

大阪大 整数問題

問題文全文(内容文):
$p,q$を素数とする.$(p\gt 2q)$
$p^n-4(-q)^n$がすべての自然数$n$で$3$の倍数となる$(p,q)$のうち$pq$を最小のものを求めよ.

大阪大過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q$を素数とする.$(p\gt 2q)$
$p^n-4(-q)^n$がすべての自然数$n$で$3$の倍数となる$(p,q)$のうち$pq$を最小のものを求めよ.

大阪大過去問
投稿日:2020.12.10

<関連動画>

福田の数学〜東京大学2025理系第4問〜関数の値が平方数となる条件

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

この問いでは、

$0$以上の整数の$2$乗になる数を平方数と呼ぶ。

$a$を正の整数とし、

$f_a (x) = x^2+x-a$とおく。

(1)$n$を正の整数とする。

$f_a(n)$は平方数ならば、$n\leqq a$であることを示せ。

(2)$f_a (n)$が平方数となる正の整数$n$の個数を

$N_a$とおく。

次の条件$(i),(ii)$が同値であることを示せ。

$(i)\quad N_a=1$である。

$(ii)\quad 4a+1$は素数である。

$2025$年東京大学理系過去問題
この動画を見る 

数学オリンピック 整数問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1111^{2018}$を$11111$で割った余りを求めよ.
この動画を見る 

数学オリンピック 予選簡単問題 6000の約数、平方数でないものの個数

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
数学オリンピック予選
超簡単問題
6000の正の約数で平方数でないものは何個か。
この動画を見る 

超良問⁉️だと思う整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$a,n$をすべて求めよ.
$a^{n+1}-(a+1)^n=2001$
この動画を見る 

素数が絡んだ整数問題(再アップ)【青山学院大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
素数$p,q$および自然数$n$に対し,$\dfrac{1}{p}+\dfrac{1}{q}+\dfrac{1}{pq}=\dfrac{1}{n}$が成り立つような$(p,q,n)$の組をすべて求めよ。

青山学院大過去問
この動画を見る 
PAGE TOP