芝浦工大 1の(4n+1)乗根 - 質問解決D.B.(データベース)

芝浦工大 1の(4n+1)乗根

問題文全文(内容文):
$n$は自然数である.
$z^{4n+1}=1$の解を$1,\alpha,\alpha_2,\alpha_3・・・\alpha_{4n}$とする.

(1)$\alpha_1\alpha_2\alpha_3・・・・・・\alpha_{4n}=\Box$
(2)$(\alpha_1-i)(\alpha_2-i)(\alpha_3-i)・・・・・・(\alpha_{4n}-i)=\Box$

2001芝浦工大過去問
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$z^{4n+1}=1$の解を$1,\alpha,\alpha_2,\alpha_3・・・\alpha_{4n}$とする.

(1)$\alpha_1\alpha_2\alpha_3・・・・・・\alpha_{4n}=\Box$
(2)$(\alpha_1-i)(\alpha_2-i)(\alpha_3-i)・・・・・・(\alpha_{4n}-i)=\Box$

2001芝浦工大過去問
投稿日:2020.09.14

<関連動画>

数学的帰納法 合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$4^{3n-1}-7^{2n-2}$は15の倍数であることを示せ
この動画を見る 

超不人気!確率漸化式だよ

アイキャッチ画像
単元: #数Ⅰ#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
点Pは原点を出発して確率$p(0\leqq P\leqq 1)$で$+1$, $1-p$で$+2$進む.
自然数nの地点に到達する確率$P_n$を求めよ.

大阪教育大過去問
この動画を見る 

【数B】数列:Σを使った等比数列の和の考え方

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
Σの式を見てどう使うかを練習しましょう!!
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜ド・モアブルの定理(4)早稲田大学の問題に挑戦

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#漸化式#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数$z_n (n=1,2,3\cdots)$が次の式を満たしている。
$z_1=1,\ z_2=\displaystyle \frac{1}{2},$ 複素数の積$z_nz_{n+1}=\displaystyle \frac{1}{2}\left(\displaystyle \frac{1+\sqrt3i}{2}\right)^{n-1}$
このとき、$S=z_1+z_2+z_3+\cdots\cdots+z_{2002}$を求めよ。

早稲田大学過去問
この動画を見る 

三項間漸化式(応用)高知大

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=18,a_2=48$である.
$a_{n+2}-5a_{n+1}+6a_n=2n^2$,一般項$a_n$を求めよ.

高知大過去問
この動画を見る 
PAGE TOP