自作 整数問題 - 質問解決D.B.(データベース)

自作 整数問題

問題文全文(内容文):
$13^n=k^2+672$
自然数$(k,n)$をすべて求めよ.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$13^n=k^2+672$
自然数$(k,n)$をすべて求めよ.
投稿日:2020.08.15

<関連動画>

筆算するな! 開成中

アイキャッチ画像
単元: #算数(中学受験)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#過去問解説(学校別)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$
\begin{array}{r}
1234567 \\[-3pt]
2345671 \\[-3pt]
3456712 \\[-3pt]
4567123 \\[-3pt]
\underline{+\phantom{0}5671234}\\[-3pt]
\end{array}
$

9で割ったあまりは?

開成中学校
この動画を見る 

整数問題 合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3p^4-5q^4-4r^2=986$
$p,q,r$は異なる素数
この動画を見る 

福田のおもしろ数学356〜2つのルートの和が自然数となる条件

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\sqrt{n}$と$\sqrt{n+2025}$が自然数となるような自然数$n$をすべて求めて下さい。
この動画を見る 

息抜き整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n!+8=2^k$
自然数$(n,k)$をすべて求めよ.
この動画を見る 

約数4個の数 渋谷教育学園幕張

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
自然数nはちょうど4つの約数を持ちそのうち2つは素数である。
これら4つの約数の和が24であるような自然数nをすべて求めよ。

渋谷教育学園幕張高等学校
この動画を見る 
PAGE TOP