レピュニット数の剰余 - 質問解決D.B.(データベース)

レピュニット数の剰余

問題文全文(内容文):
$\underbrace{11111・・・・・・・11}_{100個}$を81で割った余りを求めよ.
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\underbrace{11111・・・・・・・11}_{100個}$を81で割った余りを求めよ.
投稿日:2020.06.29

<関連動画>

福田のおもしろ数学443〜不等式の証明と等号成立条件

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$a,b,c$は正の実数とする。

$\sqrt[3]{abc}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \geqq 2\sqrt3$

を証明し、等号成立条件を調べてください。
   
この動画を見る 

成城大 ド・モアブル証明 6倍角の公式?

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#式と証明#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=\cos\theta+i\sin\theta$

(1)
$n$整数
$z^n=\cos n \theta + i \sin n \theta$を示せ

(2)
$z+\displaystyle \frac{1}{z}$を$\cos \theta$を用いて表せ

(3)
$\cos^6\theta$を$\cos2\theta,\cos4\theta,\cos6\theta$を用いて表せ

出典:2005年成城大学 過去問
この動画を見る 

【数Ⅱ】【式と証明】展開式の係数 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式の展開式における、[ ]内に指定された項の係数を求めよ。
(1) (2x²-1)⁶ [x⁶]  (2)(2x³-3x)⁵ [x⁹]

次の式の展開式における、[ ]内に指定された項の係数を求めよ。
(1) (a+b+c)⁶ [ab²c³]  (2)(x+y-3z)⁸ [x⁵yz²]

次の式の展開式における、[ ]内のものを求めよ。
(1) (x²+1/x)⁷ [x²の項の係数]  (2)(2x³-1/3x²)⁵ [定数項]   

次の式の展開式における、[ ]内に指定された項の係数を求めよ。
(1) (x+y+z)⁶ [x²yz³]
(2) (x+2y+3z)⁶ [x³y²z]
(3) (2x-3y+z)⁷ [x²y²z³]
(4) (x+y-3z)⁸ [x⁵z³]
この動画を見る 

福田のわかった数学〜高校2年生第8回〜相加相乗平均の関係

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 相加相乗平均の関係
$a\gt0,b\gt0,c\gt0$のとき、次の最小値を求めよ。
(1)$(a+b+c)\left(\displaystyle \frac{1}{a}+\displaystyle \frac{1}{b}+\displaystyle \frac{1}{c}\right)$
(2)$(a+2b+4c)\left(\displaystyle \frac{1}{a}+\displaystyle \frac{2}{b}+\displaystyle \frac{4}{c}\right)$
この動画を見る 

【高校数学】  数Ⅱ-10  分数式の計算③

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎計算しよう。


$\displaystyle \frac{x+1}{x-1}-\displaystyle \frac{x-1}{x+1} $
$\displaystyle \frac{x+1}{x-1}+\displaystyle \frac{x-1}{x+1} $


$\begin{eqnarray}
1-\frac{1}{1-\frac{1}{1-\frac{1}{a}}}
\end{eqnarray}$
この動画を見る 
PAGE TOP