内接円 傍接円 関数 B 慶應志木2021 - 質問解決D.B.(データベース)

内接円 傍接円 関数  B 慶應志木2021

問題文全文(内容文):
(1)点Pのx座標は?
(2)点Qのy座標は?
*図は動画内参照

2021慶應義塾志木高等学校
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
(1)点Pのx座標は?
(2)点Qのy座標は?
*図は動画内参照

2021慶應義塾志木高等学校
投稿日:2021.02.21

<関連動画>

福田の数学〜早稲田大学2022年理工学部第2問〜条件を満たすm個の2次関数の積でできる2m次方程式の異なる解の総和

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ p,qを相異なる素数とする。次の3条件を満たすxの2次式f(x)を考える。\\
・係数はすべて整数1でx^2の係数は1である。\hspace{100pt}\\
・f(1)=pqである。\hspace{193pt}\\
・方程式f(x)=0は整数解をもつ。\hspace{135pt}\\
以下の問いに答えよ。\hspace{200pt}\\
\\
(1)f(x)をすべて求めよ。\hspace{170pt}\\
(2)(1)で求めたものをf_1(x),f_2(x),\ldots,f_m(x)とする。2m次方程式\hspace{3pt}\\
f_1(x)×f_2(x)×\ldots×f_m(x)=0\hspace{100pt}\\
の相異なる解の総和はp,qによらないことを示せ。\hspace{60pt}
\end{eqnarray}

2022早稲田大学理工学部過去問
この動画を見る 

福田のおもしろ数学027〜1分でできたらマジ天才〜2直線のなす角の最大

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#方べきの定理と2つの円の関係#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の図で、xの辺の長さを求めよ

図は動画内参照
この動画を見る 

【簡単すぎ】4分で不定方程式が得意になります。

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$ax+by=d$を満たす整数$x,y$をすべて求めよ
$(a,b,d$は整数$)$
この動画を見る 

高校入試 接点の座標を求める

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
Aの座標=?
*図は動画内参照
この動画を見る 

合同式 数学的帰納法 東工大

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$79^n+(-1)^n.2^{6n-5}$は必ずある自然数であるとき,$m$の倍数と最大値を求めよ.

東工大過去問
この動画を見る 
PAGE TOP