問題文全文(内容文):
(1) $2x+y=1$のとき,$x^2+y^2$の最小値を求めよ。
(2) $x+2y+3=0$のとき,$xy$の最大値を求めよ。
$x\geqq O, y\geqq O, x+y=4$のとき,xのとりうる値の範囲を求めよ。また、$x^2+2y^2$の最大値と最小値を求めよ。
(1) $2x+y=1$のとき,$x^2+y^2$の最小値を求めよ。
(2) $x+2y+3=0$のとき,$xy$の最大値を求めよ。
$x\geqq O, y\geqq O, x+y=4$のとき,xのとりうる値の範囲を求めよ。また、$x^2+2y^2$の最大値と最小値を求めよ。
チャプター:
0:00 問題1(1)の解説
4:25 問題1(2)の解説
8:46 問題2の解説
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1) $2x+y=1$のとき,$x^2+y^2$の最小値を求めよ。
(2) $x+2y+3=0$のとき,$xy$の最大値を求めよ。
$x\geqq O, y\geqq O, x+y=4$のとき,xのとりうる値の範囲を求めよ。また、$x^2+2y^2$の最大値と最小値を求めよ。
(1) $2x+y=1$のとき,$x^2+y^2$の最小値を求めよ。
(2) $x+2y+3=0$のとき,$xy$の最大値を求めよ。
$x\geqq O, y\geqq O, x+y=4$のとき,xのとりうる値の範囲を求めよ。また、$x^2+2y^2$の最大値と最小値を求めよ。
投稿日:2023.05.08