【0から理解できる】数学B・数列 和の記号Σ②(等比数列の和) - 質問解決D.B.(データベース)

【0から理解できる】数学B・数列 和の記号Σ②(等比数列の和)

問題文全文(内容文):
次の和を求めよ。
(1)
$\displaystyle \sum_{k=1}^7 2^k$

(2)
$\displaystyle \sum_{k=1}^{n-1} 3^k$

(3)
$\displaystyle \sum_{k=1}^n 3・(-2)^k$
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の和を求めよ。
(1)
$\displaystyle \sum_{k=1}^7 2^k$

(2)
$\displaystyle \sum_{k=1}^{n-1} 3^k$

(3)
$\displaystyle \sum_{k=1}^n 3・(-2)^k$
投稿日:2022.01.03

<関連動画>

佐賀大 数列のの不等式

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.

(1)$n!\geqq 2^{n-1}$を示せ.
(2)$\displaystyle \sum_{k=0}^n \dfrac{1}{k!}\lt 3$を示せ.

佐賀大過去問
この動画を見る 

富山大 積分のフリしたただの漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=-1,b=0,c_1=4$
$a_{n+4}x^2+b_{n+1}x+c_{n+1}=\displaystyle \int_{2}^{x}{(a_n+b_n)t+n}at$
$a_n,b_n,c_n$の一般項を求めよ.

2021富山大過去問
この動画を見る 

日本医科大 漸化式 自由に解かせてくれ!

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=-6,
a_{n+1}=2a_n+3n+4^n
これを求めよ。$
この動画を見る 

福田の数学〜千葉大学2022年理系第7問〜不定方程式の自然数解と漸化式で与えられた数列

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{7}}\ x,yについての方程式\\
x^2-6xy+y^2=9  \ldots\ldots(*)\\
に関する次の問いに答えよ。\\
(1)x,yがともに正の整数であるような(*)の解のうち、yが最小であるものを\\
求めよ。\\
(2)数列a_1,a_2,a_3,\ldotsが漸化式\\
a_{n+2}-6a_{n+1}+a_n=0  (n=1,2,3,\ldots)\\
を満たすとする。このとき、(x,y)=(a_{n+1},a_n)が(*)を満たすならば、\\
(x,y)=(a_{n+2},a_{n+1})も(*)を満たすことを示せ。\\
(3)(*)の整数解(x,y)は無数に存在することを示せ。
\end{eqnarray}

2022千葉大学理系過去問
この動画を見る 

田の数学〜早稲田大学2021年人間科学部第3問〜格子点の個数

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 自然数nについて、連立不等式\\
\\
\left\{\begin{array}{1}
x \geqq 0\\
\displaystyle\frac{1}{4}x+\frac{1}{5}|y| \leqq n\\
\end{array}\right.\\
\\
を満たす整数の組(x,\ y)の個数は、n=1のときは\\
\boxed{\ \ シ\ \ }であり、nの式で表すと\\
\\
\boxed{\ \ ス\ \ }n^2+\boxed{\ \ セ\ \ }n+\boxed{\ \ ソ\ \ }\\
\\
となる。
\end{eqnarray}

2021早稲田大学人間科学部過去問
この動画を見る 
PAGE TOP