【数Ⅲ-160】定積分で表された関数③(極値編) - 質問解決D.B.(データベース)

【数Ⅲ-160】定積分で表された関数③(極値編)

問題文全文(内容文):
数Ⅲ(定積分で表された関数③・極値編)
Q.次の関数の極値を求めよ。

①$f(x)=\int_0^xt\cos t \ dt(0 \lt x \lt \pi)$

➁$f(x)=\int_0^x (1-t^2)e^tdt$
単元: #微分とその応用#積分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分で表された関数③・極値編)
Q.次の関数の極値を求めよ。

①$f(x)=\int_0^xt\cos t \ dt(0 \lt x \lt \pi)$

➁$f(x)=\int_0^x (1-t^2)e^tdt$
投稿日:2020.07.31

<関連動画>

【数Ⅲ】微分法の応用:接線と法線 放物線 y²=8x 上の点P(1,-2√2)における接線の方程式を求めよう。

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線 $y^2=8x$ 上の点P($1,-2\sqrt2$)における接線の方程式を求めよう。
この動画を見る 

12東京都教員採用試験(数学:1-(5) 連続と微分)

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
\displaystyle \frac{x}{1+e^{\frac{1}{x}}}(x \neq 0) \\
0(x=0)
\end{array}
\right.
\end{eqnarray}$ は連続であるが微分可能でないことを示せ
この動画を見る 

大学入試問題#14 津田塾大学(2021) 微積の応用

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$0 \leqq x \leqq \displaystyle \frac{\pi}{x}$
$f(x)=\displaystyle \int_{0}^{\frac{\pi}{2}}\sin|x-t|dt$の最小値、最大値を求めよ。

出典:2021年津田塾大学 入試問題
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第1問〜関数の増減と面積

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#数学(高校生)#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$関数$f(x)=\frac{1}{2}(x+\sqrt{2-3x^2})$の定義域は$-\frac{\sqrt{\boxed{\ \ ア\ \ }}}{\boxed{\ \ イ\ \ }} \leqq x \leqq \frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}$であり、
$f(x)$は$x=\frac{\sqrt{\boxed{\ \ オ\ \ }}}{\boxed{\ \ カ\ \ }}$のとき、
最大値$\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}$をとる。曲線$y=f(x)$、

直線$y=2x$およびy軸で囲まれた図形の面積は$\boxed{\ \ ケ\ \ }$となる。

$\boxed{\ \ ケ\ \ }$の解答群
$⓪\frac{\sqrt3}{18}\pi  ①\frac{\sqrt3}{36}\pi  ②\frac{\sqrt3}{72}\pi  ③\frac{1}{6}+\frac{\sqrt3}{36}\pi  ④\frac{1}{24}+\frac{\sqrt3}{36}\pi$
$⑤\frac{5}{24}+\frac{\sqrt3}{36}\pi  ⑥\frac{1}{3}+\frac{\sqrt3}{18}\pi  ⑦\frac{1}{6}+\frac{\sqrt3}{18}\pi  ⑧\frac{1}{8}+\frac{\sqrt3}{18}\pi  ⑨\frac{7}{24}+\frac{\sqrt3}{18}\pi$
この動画を見る 

頻出!微分のよく見るような問題【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
曲線$y=\displaystyle \frac{1}{2}(x^2+1)$上の点$P$における接線は$x$軸と交わるとし,その交点を$\varrho$とおく。線分$P\varrho$の長さを$L$とするとき,$L$が取りうる値の最小値を求めよ。

京都大過去問
この動画を見る 
PAGE TOP