【受験対策】 数学-関数⑧ - 質問解決D.B.(データベース)

【受験対策】  数学-関数⑧

問題文全文(内容文):
右の図のように、3点、A(4.8), B(-4.0), C(2.0)があります。直線又は2点、A、Bを通る直線で、直線mは2点、A、Cを通る直線です。また、直線nは、関数$y=-\displaystyle \frac{1}{4}x+\displaystyle \frac{19}{4}$のグラフで、線分ACの中点、Dを通り、直線mと垂直に交わっています。

①直線ℓの式は?

②直線mの式は?

③直線nとX軸との交点をEとするとき、△ADEの面積は?

④3点A.B.Cを通る円の中心の座標を求めよう。
※図は動画内参照
単元: #数Ⅱ#図形と方程式#点と直線
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のように、3点、A(4.8), B(-4.0), C(2.0)があります。直線又は2点、A、Bを通る直線で、直線mは2点、A、Cを通る直線です。また、直線nは、関数$y=-\displaystyle \frac{1}{4}x+\displaystyle \frac{19}{4}$のグラフで、線分ACの中点、Dを通り、直線mと垂直に交わっています。

①直線ℓの式は?

②直線mの式は?

③直線nとX軸との交点をEとするとき、△ADEの面積は?

④3点A.B.Cを通る円の中心の座標を求めよう。
※図は動画内参照
投稿日:2014.01.17

<関連動画>

【数Ⅱ】図形と方程式:2x+3y=6に関して、y=2x に対称な直線の求め方(前編)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2x+3y=6に関して、y=2x に対称な直線を求めよ。
この動画を見る 

【短時間でマスター!!】直線の方程式(平行と垂直)の求め方を解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学2B
直線の方程式
並行と垂直の条件
①点$(1,-3)$を通り、直線$4x+5y=2$に平行な直線
②点$(0,1)$を通り、直線$y=-3x-1$に垂直な直線
この動画を見る 

福田の数学〜立教大学2021年理学部第1問(2)〜3直線が1点で交わる条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)$t$を実数とする。座標平面上の3つの直線
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+(2t-2)y-4t+2=0 \\
x+(2t+2)y-4t-2=0 \\
2tx+y-4t=0     
\end{array}
\right.
 (-2 \leqq t \leqq 1)
\end{eqnarray}$ 
が1つの点で交わるようなtの値を全て求めると$t=\boxed{イ}$である。

2021立教大学理学部過去問
この動画を見る 

【マイナス】の捉え方は【世界】を変える

アイキャッチ画像
単元: #数Ⅱ#物理#図形と方程式#点と直線#円と方程式#力学#数学(高校生)#理科(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
相対速度 円の方程式、直線の方程式まとめ動画です
この動画を見る 

福田の数学〜慶應義塾大学看護医療学部2025第4問〜放物線と接線の囲む面積と内積の最小値

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$k$を実数の定数とし、

座標平面上に$2$点$A(1,-3),B(-1,k)$をとる。

また、放物線$y=x^2$を$C$とする。

以下に答えなさい。

(1)点$A$から曲線$C$に引いた$2$本の接線のうち、

傾きが正の接線を$\ell_1$とし、

傾きが負の接線を$\ell_2$とするとき、

直線$\ell_1$の方程式は$y=\boxed{テ}$であり、

直線$\ell_2$の方程式は$y=\boxed{ト}$である。

また、$2$直線$\ell_1,\ell_2$のなす角を$\theta$とすると、

$\tan\theta=\boxed{ナ}$である。

ただし、$0\lt\theta\lt\dfrac{\pi}{2}$とする。

さらに、曲線$C$と$2$直線$\ell_1,\ell_2$で囲まれた

図形の面積は$\boxed{ニ}$である。

(2)点$P$が曲線$C$全体を動くときの

$\overrightarrow{PA}・\overrightarrow{PB}$の最小値を$m$とする。

このとき、$m$を$k$を用いて表すと、

$k\geqq \boxed{ヌ}$のときは$m=\boxed{ネ}$であり、

$k\lt \boxed{ヌ}$のときは、$m=\boxed{ノ}$である。

$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る 
PAGE TOP