19神奈川県教員採用試験(数学:11番 ひたすら微分) - 質問解決D.B.(データベース)

19神奈川県教員採用試験(数学:11番 ひたすら微分)

問題文全文(内容文):
$\boxed{11}$ $y=\frac{e^x}{e^x+a}$は変曲点をただ1つだけもつ。変曲点のy座標を求めよ。
単元: #微分とその応用#微分法#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\boxed{11}$ $y=\frac{e^x}{e^x+a}$は変曲点をただ1つだけもつ。変曲点のy座標を求めよ。
投稿日:2020.09.06

<関連動画>

福田のわかった数学〜高校3年生理系070〜接線(2)媒介変数表示の接線

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$接線(2) 媒介変数表示の接線
$\left\{
\begin{array}{1}
x=\theta-\sin\theta\\
y=1-\cos\theta
\end{array}
\right.$
で表される曲線の$\theta=\frac{3\pi}{2}$のときの点Pにおける接線を求めよ。
この動画を見る 

14大阪府教員採用試験(数学:高3-1番 微分)

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
3⃣
(1)$f(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
logx \quad x \geqq 1 \\
ax^2+bx+1 \quad x<1
\end{array}
\right.
\end{eqnarray}$

x=1で微分可能となるようにa,bの値を定めよ。

$(i) \displaystyle \lim_{ x \to 1 } f(x) = f(1)$
$(ii)f'(1)$が存在する
この動画を見る 

福田の数学〜東京医科歯科大学2023年医学部第3問〜積分で定義された関数と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $a$,$b$を正の実数、$p$を$a$より小さい正の実数とし、すべての実数$x$について
$\displaystyle\int_p^{f(x)}\frac{a}{u(a-u)}du$=$bx$, 0<$f(x)$<$a$
かつ$f(0)$=$p$を満たす関数$f(x)$を考える。このとき以下の問いに答えよ。
(1)$f(x)$を$a$,$b$,$p$を用いて表せ。
(2)$f(-1)$=$\frac{1}{2}$, $f(1)$=1, $f(3)$=$\frac{3}{2}$のとき、$a$,$b$,$p$を求めよ。
(3)(2)のとき、$\displaystyle\lim_{x \to -\infty}f(x)$, $\displaystyle\lim_{x \to \infty}f(x)$ を求めよ。
この動画を見る 

福田の数学〜東京理科大学2023年創域理工学部第2問〜直線の交点と関数の最大

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 座標平面上に点A(2,0)と点B(0,1)がある。正の実数$t$に対して、$x$軸上の点P(2+$t$, 0)と$y$軸上の点Q(0, 1+$\displaystyle\frac{1}{t}$)を考える。
(1)直線AQの方程式を、$t$を用いて表せ。
(2)直線BPの方程式を、$t$を用いて表せ。
直線AQと直線BPの交点をR($u$,$v$)とする。
(3)$u$と$v$を、$t$を用いて表せ。
(4)$t$>0の範囲で、$u$+$v$の値を最大にする$t$の値を求めよ。
この動画を見る 

【数Ⅲ】【微分とその応用】関数のグラフ5 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
1.4次関数$y=f(x)$のグラフの2つの変曲点の座標は
$(-1,1),(1,8)$であり、点$(1,8)$における接線は
直線$y=x$に平行である。関数$f(x)$を求めよ。
2.$a$は定数とする。
曲線$y=(x^2+2x+a)e^x$の変曲点の個数を調べよ
この動画を見る 
PAGE TOP