数学「大学入試良問集」【13−14 確率漸化式の基本】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【13−14 確率漸化式の基本】を宇宙一わかりやすく

問題文全文(内容文):
袋の中に$1~9$までの異なる数字を1つずつ書いた9枚のカードが入っている。
この中から1枚を取り出し、数字を調べて袋に戻す。
この試行を$n$回繰り返したとき、調べた$n$枚のカードの数字の和が偶数になる確率を$P_n$とする。
このとき、次の各問いに答えよ。
(1)$P_2,P_3$の値を求めよ。
(2)$P_{n+1}$を$P_n$を用いて表せ。
(3)$P_n$を$n$を用いて表せ。
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
袋の中に$1~9$までの異なる数字を1つずつ書いた9枚のカードが入っている。
この中から1枚を取り出し、数字を調べて袋に戻す。
この試行を$n$回繰り返したとき、調べた$n$枚のカードの数字の和が偶数になる確率を$P_n$とする。
このとき、次の各問いに答えよ。
(1)$P_2,P_3$の値を求めよ。
(2)$P_{n+1}$を$P_n$を用いて表せ。
(3)$P_n$を$n$を用いて表せ。
投稿日:2021.06.12

<関連動画>

福田の数学〜明治大学2022年全学部統一入試12AB第3問〜漸化式の図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数列#漸化式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
(1)三角形$ABC$の内接円が辺$AB$と接する点をPとし、
辺$BC$と接する点を$Q$とし、辺$CA$と接する点をRとする。
$\angle A$の大きさを$θ$とすると、$\angle APR=\boxed{ア}$であり、
$\angle PQR=\boxed{ア}$である。

$\boxed{ア}$の解答群
$⓪0 ①\frac{\pi}{2} ②θ ③\frac{θ}{2} ④\frac{\pi}{2}-θ ⑤\frac{\pi-θ}{2}$
$⑥\pi-\frac{θ}{2} ⑦\pi-θ ⑧\frac{\pi-3θ}{2} ⑨\frac{\pi}{2}-3θ$

(2)三角形$T_1$の3つの角のうち、角の大きさが最小のものは$\frac{\pi}{6}$で、
最大のものは$\frac{\pi}{2}$であるとする。
$n=1,\ 2,\ 3,\ ...$について、三角形$T_n$の内接円を$O_n$とし、
$T_n$と$O_n$とが接する3つの点を頂点とするような三角形を$T_{n+1}$とする。
このとき、三角形$T_2$の3つの角のうち、
角の大きさが最小のものは$\frac{\pi}{\boxed{イ}}$で、
最大のものは$\frac{\boxed{ウ}\ \pi}{\boxed{エオ}}$である。
$n=1,\ 2,\ 3,\ ...$について、三角形$T_n$の3つの角のうち、
角の大きさが最小のものを$a_n$とし、最大のものを$b_n$とする。三角形$T_{n+1}$について、
$a_{n+1}=\boxed{カ},\ \ \ b_{n+1}=\boxed{キ}$
と表せる。この式より
$a_n+b_n=\frac{\boxed{ク}}{\boxed{ケ}}\pi,$
$b_n-a_n=\frac{\pi}{\boxed{コ}・\boxed{サ}^{n-1}}$
であり、$a_n=\frac{\pi}{\boxed{シ}}(1-\frac{1}{\boxed{ス}^n}) $である。

$\boxed{カ}、\boxed{キ}$の解答群
$⓪\frac{a_n}{2} ①\frac{b_n}{2} ②\frac{\pi}{2}-a_n ③\frac{\pi}{2}-b_n ④\frac{\pi-a_n}{2}$
$⑤\frac{\pi-b_n}{2} ⑥\pi-\frac{a_n}{2} ⑦\pi-\frac{b_n}{2} ⑧\pi-a_n ⑨\pi-b_n$

2022明治大学全統過去問
この動画を見る 

弘前大 漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=2$,$a_{n+1}=\dfrac{n+2}{n}a_n+1$
一般項を求めよ.

弘前大過去問
この動画を見る 

【数B】【数列】数学的帰納法4 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
条件$a_1=3,{a_n}^2=(n+1)a_{n+1}+1$
によって定められる数列$\{a_n\}$がある。
(1) $a_2,a_3,a_4$を求めよ。
(2) 第$n$項$a_n$を推測して、
その結果を数学的帰納法によって証明せよ。
この動画を見る 

東工大 三項間漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$x^2-3x+5=0$の2つの解を$\alpha,\beta$とする.
$\alpha^n+\beta^n-3^n$は5の倍数であることを示せ.

2013東工大過去問
この動画を見る 

宇都宮大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#宇都宮大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=1$
$a_{n}=-2S_{n}S_{n-1}$
$(n=2,3…)$

(1)
$a_{2},a_{3}$を求めよ

(2)
$0 \lt S_{n} \leqq 1$を示せ

(3)
$a_{n}$を求めよ

出典:2008年宇都宮大学 過去問
この動画を見る 
PAGE TOP