大学入試問題#258 東京理科大学(2011) #定積分 #面積 - 質問解決D.B.(データベース)

大学入試問題#258 東京理科大学(2011) #定積分 #面積

問題文全文(内容文):
$y-\tan\ x(0 \leqq x \lt \displaystyle \frac{\pi}{2})$
$y-\cos\ x(0 \leqq x \leqq \displaystyle \frac{\pi}{2})$
$x$軸で囲まれた部分の面積を求めよ。

出典:2011年東京理科大学 入試問題
チャプター:

00:00 問題提示
00:11 本編スタート
04:23 作成した解答①の紹介
04:37 作成した解答②の紹介

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$y-\tan\ x(0 \leqq x \lt \displaystyle \frac{\pi}{2})$
$y-\cos\ x(0 \leqq x \leqq \displaystyle \frac{\pi}{2})$
$x$軸で囲まれた部分の面積を求めよ。

出典:2011年東京理科大学 入試問題
投稿日:2022.07.20

<関連動画>

【理数個別の過去問解説】2023年度 神奈川大学給費生試験 文系数学 全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#神奈川大学#数学(高校生)#大学入試解答速報#数学#神奈川大学
指導講師: 理数個別チャンネル
問題文全文(内容文):
2022年12月18日(日)に行われた神奈川大学給費生入試の文系数学の解答速報になります。
特に大問1の「三角関数」「確率」、大問2の「面積」、大問3の「不等式」については長めに解説をしています。受験生層を考慮し、基本的な考え方や公式の説明などは省いておりますので詳しい説明を希望される方がいらっしゃればコメントをいただければと思います。
また、計算などの誤りがあればご指摘いただけますと幸いです!!
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第3問〜点の存在する条件と領域の面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
Oを原点とする座標平面上で考える。座標平面上の2点$S(x_1,y_1),T(x_2,y_2)$
に対し、点Sが点Tから十分離れているとは、
$|x_1-x_2| \geqq 1$ または $|y_1-y_2| \geqq 1$
が成り立つことと定義する。
不等式
$0 \leqq x \leqq 3, 0 \leqq y \leqq 3$
が表す正方形の領域をDとし、その2つの頂点A(3,0), B(3,3)を考える。
さらに、次の条件$(\textrm{i}),(\textrm{ii})$を共に満たす点Pをとる。
$(\textrm{i})$点Pは領域Dの点であり、かつ、放物線$y=x^2$上にある。
$(\textrm{ii})$点Pは、3点O,A,Bのいずれからも十分離れている。
点Pのx座標をaとする。
(1)aのとりうる値の範囲を求めよ。
(2)次の条件$(\textrm{iii}),(\textrm{iv})$をともに満たす点Qが存在しうる範囲の面積f(a)を求めよ。
$(\textrm{iii})$点Qは領域Dの点である。
$(\textrm{iv})$点Qは、4点O,A,B,Pのいずれからも十分離れている。
(3)aは(1)で求めた範囲を動くとする。(2)のf(a)を最小にするaの値を求めよ。

2022東京大学理系過去問
この動画を見る 

#福島大学(2020) #不定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int 2\ x\ log|x+1|dx$

出典:2020年福島大学
この動画を見る 

【頻出】整数の証明問題【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)$n$を自然数とするとき、$n^2$は$3$の倍数か、または$3$で割った余りが$1$であることを証明せよ。
(2)自然数$a,b,c$が$a^2+b^2=c^2$を満たすとき、$a,b$のうち少なくとも$1$つは$3$の倍数出あることを証明せよ。

数学入試問題過去問
この動画を見る 

福田の数学〜京都大学2025理系第4問〜平面が定点を通過する条件

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

座標空間の$4$点$O,A,B,C$は同一平面上にないとする。

$s,t,u$は$0$でない実数とする。

直線$OA$上の点$L$、

直線$OB$上の点$M$、直線$OC$上の点$N$を

$\overrightarrow{ OL }=s\overrightarrow{ OA },\overrightarrow{ OM }=t\overrightarrow{ OB },\overrightarrow{ ON }=u\overrightarrow{ OC }$が

成り立つようにとる。

(1)$s,t,u$が$\dfrac{1}{s}+\dfrac{2}{t}+\dfrac{3}{u}=4$を満たす範囲で

あらゆる値をとるとき、

$3$点$L,M,N$の定める平面$LMN$は、

$s,t,u$の値に無関係な一定の点$P$を通ることを示せ。

さらに、そのような点$P$はただ一つに定まることを示せ。

$2025$年京都大学理系過去問題
この動画を見る 
PAGE TOP